
SG24-4719-00

Open32
Developer API Extensions for OS/2 Warp

December 1996

SG24-4719-00

International Technical Support Organization

Open32
Developer API Extensions for OS/2 Warp

December 1996

IBML

Take Note!

Before using this information and the product it supports, be sure to read the general information
in Appendix B, “Special Notices” on page 263.

First Edition (December 1996)

This edition applies to the Developer API Extensions of OS/2 Warp Version 3 with FixPak 17 or greater
installed. The programs described in this edition will also execute on OS/2 Warp Version 4 utilizing
the Open32 support included in OS/2 Warp Version 4.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JN9B Building 045 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1996. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Figures . ix

Tables . xv

Preface . xvii
How This Redbook Is Organized . xviii
The Team That Wrote This Redbook . xix
Comments Welcome . xx

Chapter 1. Open32 Overview . 1
1.1 Why Open32? . 3
1.2 Open32 Architecture . 3
1.3 What is Open32? . 4
1.4 Independent Software Vendors Benefits 6
1.5 Tools . 6

1.5.1 OS/2 Warp Toolkit . 6
1.5.2 VisualAge C++ . 7
1.5.3 SMART . 7
1.5.4 Hyperwise . 7

1.6 Application Design Considerations . 8
1.6.1 Common versus Mixed Mode Code 8
1.6.2 New verses Existing Code . 9
1.6.3 How much can be Shared? . 10

1.7 Overview of Scenarios . 12

Chapter 2. Tools Used with OS/2 Developer API Extensions 15
2.1 The Developer Connection for OS/2 Volume 10 15

2.1.1 Installing The Developer Connection for OS/2 Volume 10 16
2.1.2 Starting The Developer Connection for OS/2 Volume 10 22

2.2 FixPak 17 (XR_W017) . 24
2.2.1 Installing FixPak 17 . 25

2.3 OS/2 Warp Toolkit . 31
2.3.1 Installing OS/2 Warp Toolkit . 31
2.3.2 Configuring the Resource Compiler 40
2.3.3 Where to Learn More About the Toolkit 46

2.4 SMART . 47
2.4.1 Installing SMART . 47
2.4.2 Where to Learn More About SMART 56

2.5 VisualAge C++ . 57
2.5.1 Installing VisualAge C++ . 57
2.5.2 Where to Learn More About VisualAge C++ 69

 Copyright IBM Corp. 1996 iii

2.6 Developer API Extensions . 70
2.6.1 Installing Developer API Extensions 70

Chapter 3. Howdy, World! . 79
3.1 Overview of the Migration Process . 79

3.1.1 Copying the Source Files . 81
3.1.2 Changing the Source Code . 82
3.1.3 Recompiling the Source Code . 83
3.1.4 Converting Resource Compiler Files 83
3.1.5 Converting the Resources . 86
3.1.6 Recompiling the Resource Compiler file 87
3.1.7 Compiling MAIN.C . 88
3.1.8 Creating a New DEF File . 89
3.1.9 Linking the Application and Binding the Resources 90
3.1.10 Testing the Application . 91

3.2 Enhancing Your Application . 92
3.2.1 Adding a Menu . 92
3.2.2 Adding Accelerators . 95
3.2.3 Adding Dialog Boxes . 96
3.2.4 Resource Differences and SMART Limitations 100

Chapter 4. MDI Sample Program . 103
4.1 Application's Overview . 103
4.2 User's Interface . 105
4.3 Summary of Win32 API Functions Used 108
4.4 Source Files . 110
4.5 Coding . 110

4.5.1 Resources . 111
4.5.2 WinMain() . 112
4.5.3 MainWndProc() . 114
4.5.4 MDIWndProc() . 118
4.5.5 Drawing Functions . 122

4.6 Migration . 129

Chapter 5. Mixed Mode Sample Program 133
5.1 Application Overview . 133
5.2 Source Files . 137
5.3 Application Design . 137
5.4 Coding . 138

5.4.1 Resources . 139
5.4.2 Common Source Code . 140
5.4.3 Platform Specific Code . 141

5.5 Migration . 149
5.5.1 Converting Resources . 149

iv Open32 for OS/2 Warp

5.5.2 Converting Common Source Code 151
5.5.3 Converting Platform Specific Source Code 151

5.6 Application Enhancement on OS/2 167

Chapter 6. Named Pipe Sample Program 179
6.1 Application's Overview . 179

6.1.1 Named Pipe Server Application's Overview 179
6.1.2 Named Pipe Client Application's Overview 181

6.2 Source Files . 183
6.3 Application Design . 184
6.4 Coding . 186

6.4.1 Server Application Coding . 186
6.4.2 Client Application Coding . 188

6.5 Migration . 189
6.5.1 Unsupported API Function Classification 190
6.5.2 Unsupported API Function Prototyping 191
6.5.3 Unsupported API Function Coding 192

6.6 Run the Applications . 193

Chapter 7. Tree View Control Sample Program 195
7.1 How the OS/2 Tree View Control Works 196

7.1.1 Translation Technique Advantages 198
7.1.2 How the OS/2 Tree View Control is Written 198
7.1.3 Overview of the Translation Process 201
7.1.4 Details on How the Tree View Control Works 205
7.1.5 Handling the Image List . 210

7.2 Using the Tree View Translation Control 213
7.2.1 Copying the Source Files . 213
7.2.2 Changes to the Source Code . 214
7.2.3 Converting Resources . 219
7.2.4 Creating a Makefile . 220
7.2.5 Creating a DEF File . 221
7.2.6 Building the Application . 221
7.2.7 Running the New TVTest for OS/2 223

7.3 Extending the OS/2 Tree View Control 224
7.4 Creating your own Translation Controls 225

7.4.1 Template Source Files . 225
7.4.2 Modifying the Template . 226
7.4.3 Hints on Creating Translation Controls 229

Chapter 8. Existing Windows 16-bit Application Ported to OS/2 235
8.1 Overview of the Program Structure 235
8.2 Overview of the Migration Process 236

8.2.1 Changes to the Source Code . 237

Contents v

8.2.2 Converting the Resource Compiler File 243
8.2.3 Converting Graphical Resources 245

8.3 Converting the Help File . 245
8.3.1 Creating a New Makefile . 246
8.3.2 Creating the DEF File . 247
8.3.3 Creating the Executable . 247
8.3.4 Running Address . 249

Chapter 9. Hints and Tips for Open32 . 251
9.1 General Design Hints and Tips . 251

9.1.1 New Program Design Hints & Tips 251
9.1.2 Existing Program Migration Hints and Tips 252
9.1.3 General Coding Hints and Tips 253

Appendix A. Common Problems and Easy Solutions 255
A.1 Compiler Errors . 255

A.1.1 SYS1041: The name specified is not recognized 255
A.1.2 Errors in Compiling <OS2WIN.H> 256

A.2 Linker Errors . 256
A.2.1 Obsolete #pragma Warning . 256
A.2.2 L1104: not valid library . 256
A.2.3 Unresolved External on Win32 Functions 256
A.2.4 LNK4021: no stack segment . 257
A.2.5 LNK4038: program has no starting address 257

A.3 Resource Compiler Errors . 258
A.3.1 Undefined Keyword or Keyname 258

A.4 Run-Time Errors . 259
A.4.1 Program won't load, PMWINX.DLL Access Violation Error . . 259
A.4.2 Dialog Boxes don't Work . 261
A.4.3 Icons or Bitmaps Don't Show . 261

Appendix B. Special Notices . 263

Appendix C. Related Publications . 265
C.1 International Technical Support Organization Publications 265
C.2 Redbooks on CD-ROMs . 265
C.3 Other Publications . 265

How To Get ITSO Redbooks . 267
How IBM Employees Can Get ITSO Redbooks 267
How Customers Can Get ITSO Redbooks 268
IBM Redbook Order Form . 269

List of Abbreviations . 271

vi Open32 for OS/2 Warp

Index . 273

Contents vii

viii Open32 for OS/2 Warp

Figures

1. Open32 Architecture . 4
2. Installation Command for The Developer Connection for OS/2

Volume 10 . 16
3. The Developer Connection for OS/2 Volume 10 Installation Window 17
4. The Developer Connection for OS/2 Volume 10 Installation Option 18
5. The Developer Connection for OS/2 Volume 10 Install Screen . . . 18
6. The Developer Connection for OS/2 Volume 10 Install - Directories 20
7. The Developer Connection for OS/2 Volume 10 Install Progress . . 21
8. Installation and Maintenance . 21
9. The Developer Connection Installation Finished 22

10. The Developer Connection Folder on the Desktop 22
11. The Developer Connection Folder . 23
12. The Developer Connection for OS/2 Folder 23
13. What's New in The Developer Connection for OS/2 Volume 10 . . . 24
14. Revision Level . 25
15. Starting Corrective Service Facility 25
16. Corrective Service Facility Product Information 26
17. Select Source Drive Dialog Box . 26
18. Please be Patient . 27
19. Corrective Service Facility: Serviceable Products 27
20. Corrective Service Facility: Archive Path Prompt 28
21. Corrective Service Facility: Locked Files 28
22. Corrective Service Facility: Progress Window 29
23. Corrective Service Facility: Service Permission 30
24. Corrective Service Facility: Service Complete 30
25. The Developer Connection for OS/2 Volume 10 Catalog 32
26. Developer Toolkits Menu . 33
27. Toolkits Available in The Developer Connection for OS/2 34
28. Information about OS/2 Warp Toolkit 35
29. Disc Request Screen . 36
30. Installation-Warning Screen . 36
31. Installation Selection Screen . 37
32. Installation Selection (Minimum) Screen 38
33. Installation Options Dialog . 39
34. Installation Status Screen . 40
35. Installation Status Screen . 40
36. Launch Pad . 41
37. Find Objects . 41
38. Searching Progress . 42
39. Find Results . 42
40. RC.EXE: Settings Notebook--File tab 43

 Copyright IBM Corp. 1996 ix

41. Correct Resource Compiler File . 44
42. Earlier Resource Compiler File . 45
43. Other Resource Compiler General tab 46
44. Toolkit Information Folder . 47
45. The Developer Connection for OS/2 Products Main Menu 48
46. Development Tools in The Developer Connection for OS/2 Volume

10 . 49
47. Information about SMART-Version 2.1 in The Developer Connection

for OS/2 Volume 10 . 50
48. SMART Installation Window . 51
49. SMART Installation: Source and Target Paths 51
50. SMART Installation Setup Options . 52
51. Installing SMART Window . 52
52. SMART Installation--CONFIG.SYS Maintenance 53
53. SMART Installation--Changes Complete 53
54. SMART Installation - Edit CONFIG.SYS 54
55. SMART Installation - CONFIG.SYS . 55
56. SMART Installation - Completed . 55
57. SMART2 Toolset Folder on the Desktop 56
58. SMART2 Toolset Folder Contents . 56
59. The Developer Connection for OS/2 Volume 10 Catalog 58
60. Compilers Available on The Developer Connection for OS/2 Volume

10 . 59
61. Information about VisualAge C++ 60
62. Disc Request Screen . 61
63. Welcome to VisualAge C++ . 61
64. VisualAge C++ Install . 62
65. VisualAge C++ Install-Directories 63
66. VisualAge C++ Minimum Install . 64
67. VisualAge C++ Disk Space . 65
68. VisualAge C++ Install - Progress 66
69. VisualAge C++ Successfully Installed 66
70. VisualAge C++ Installation Window 67
71. Install Phase 2 . 68
72. VisualAge C++ Folder on Desktop 68
73. VisualAge C++ Folder . 69
74. VisualAge C++ Information Folder 70
75. The Developer Connection for OS/2 Volume 10 Catalog 71
76. IBM OS/2 Products Available on The Developer Connection for

OS/2 Volume 10 . 72
77. Developer API Extensions Information Screen 73
78. Developer API Extensions Install . 74
79. Developer API Extensions Install - Directories 75
80. Developer API Extensions Install - Progress 76

x Open32 for OS/2 Warp

81. Developer API Extensions Successfully Installed 76
82. Developer API Extensions Installation 77
83. Structure of Howdy Source Files for Both Platforms 80
84. Copy the Source Files from the CD-ROM to your Hard Drive 82
85. Changes to HOWDY.C . 82
86. Recompiling HOWDY.C . 83
87. Selecting Translate Resources . 84
88. Resource Translation Dialog Box . 85
89. Results of the Resource Compiler Translation 85
90. Selecting Convert Graphical Resources in SMART 86
91. Selecting Files to Convert . 87
92. Results of the Icon Conversion . 87
93. Results of Resource Compiler . 88
94. MAIN.C from the OS/2 Warp Toolkit 89
95. Copy and Compile MAIN.C . 89
96. HOWDY.DEF . 90
97. Link and Bind Application . 91
98. Your New OS/2 Application . 92
99. Copying the Howdy Menu Source Files 93
100. HOWDY.C: Precompiler Statement . 94
101. SMART Output when Translating a Menu 94
102. Howdy with a Menu . 95
103. SMART Results with Accelerators . 96
104. Results of Dialog Box Migration . 97
105. Howdy Compiler Error . 98
106. Message Settings Dialog Box . 98
107. HOWDY.RC with Modifications . 99
108. A Fully Functional OS/2 Accelerator Definition 100
109. MDI Sample Program Overview . 104
110. MDI Sample Program Architecture 105
111. MDI Sample Program Main Menu 106
112. Draw Pull-Down Menu . 107
113. Window Pull-Down Menu . 107
114. MDI Sample Program's Resources 111
115. MDI Sample Program WinMain() Function 113
116. NewMDIChild(): Create a New MDI Child Window 116
117. MainWndProc(): Main Window Procedure 116
118. InitMDIChild(): Initilize a MDI Child Window 119
119. MDIWndProc(): MDI Client Window Procedure 120
120. DrawMyBitmap(): Draw Bitmaps . 123
121. Bitmaps . 124
122. DrawMyGraphics(): Draw Graphics 124
123. Graphics . 125
124. DrawMyText(): Draw Text . 126

Figures xi

125. Font Selection Dialog . 127
126. MDI Text Child Window . 128
127. CaptureScreen(): Capture Screen Image 128
128. MDI Screen Capture Child Window 129
129. MDI Sample Program's DEF File . 130
130. MDI Sample Program's MAKEFILE 131
131. MDI Sample Program's File Structure 132
132. Mixed Mode Sample Program Overview 133
133. Mixed Mode Sample Program Main Menu 134
134. Mixed Mode Message Properties Tab Control on Windows 95 . . 135
135. Mixed Mode Message Properties Notebook on OS/2 135
136. Mixed Mode Color Page on Windows 95 136
137. Mixed Mode Color Page on OS/2 136
138. Mixed Mode Sample Program Architecture 138
139. Mixed Mode Sample Program's Resources (MIXMODE.RC) . . . 139
140. Mixed Mode Interface Data Type and Function Prototypes

(DEPEND.H) . 141
141. Mixed Mode Win32 Platform Specific Code (DEPEND.C) 144
142. Mixed Mode Converted Resources for OS/2 149
143. SMART Defined List of Files: File Pull-Down Menu 152
144. SMART Defined List of Files: Select File for List-of-Files Dialog . 153
145. SMART Defined List of Files: Files List Dialog 154
146. SMART Defined List of Files: Add Files To List Dialog 155
147. SMART Select Migration Table: Table Pull-Down Menu 156
148. SMART Selected Migration Table: Migration Tables Dialog 157
149. SMART Analyzer Source Code: Analysis Pull-Down Menu 157
150. SMART Analyzer Source Code: Source Code Analysis Dialog . . 158
151. SMART Analyzer Source Code: Source Code Analysis Report . . 159
152. SMART Migrate Source Code: Migrate Pull-Down Menu 159
153. SMART Migrate Source Code: Migration Process Options 160
154. Mixed Mode OS/2 Platform Specific Code (DEPEND.C) 162
155. Mixed Mode Enhanced Resources for OS/2 (MIXMODE.RC) . . . 168
156. Mixed Mode Enhanced Color Page on OS/2 171
157. Mixed Mode Enhanced Platform Specific Code for OS/2

(DEPEND.C) . 171
158. Named Pipe Server: File Pull-Down 180
159. Named Pipe Server: Named Pipe Instance Window 180
160. Named Pipe Server: Send Message Dialog 181
161. Named Pipe Client: File Pull-Down 182
162. Named Pipe Client: Send Message Dialog 182
163. Named Pipe Sample Program Architecture 185
164. Named Pipe Server: MAKEFILE . 190
165. Named Pipe Client: MAKEFILE . 190
166. Named Pipe Library MAKEFILE . 192

xii Open32 for OS/2 Warp

167. Tree View Control under Windows 95 196
168. Tree View Control under Windows 197
169. Tree View Translation Control under OS/2 197
170. Command Messages Translated for the Tree View Control 202
171. Notification Messages Translated by the Open32 Tree View

Control . 204
172. OS2WINTV.H: Definition of TreeView_InsertItem() 205
173. OS2TV.C: Processing the TVM_INSERTITEM Message 206
174. OS2TV2.C: Processing the TVM_INSERTITEM Message 206
175. OS2WINTV.H: Definition of HTREEITEM 208
176. OS2TV.C: TVOS2WndProc() Processing CN_CONTEXTMENU . . . 209
177. OPEN32TV.C: Open32GetLong() . 210
178. OPEN32TV.C: Open32SendMsg() 210
179. TVTEST.C: Changes to the #include Statements 214
180. Changes to TVTEST.C . 215
181. TVTEST.C: Original Code for Adding Images to Image List 216
182. TVTEST.C: AddIcons() for both Windows and OS/2 217
183. TVTEST.C: Revised Code for ID_IMAGELIST_ICONS and

ID_IMAGELIST_BITMAPS . 219
184. Adding <os2.h> to TVTEST.RC . 220
185. MAKEFILE: TVTest Makefile . 221
186. TVTEST.DEF . 221
187. Building TVTest . 222
188. Running TVTest from the Command Line 223
189. TVTest is now an OS/2 Program . 224
190. OPEN32TV.C: Directing Messages to MsgToTV() 228
191. OS2CC.C: WM_CREATE Processing 229
192. OS2WINTV.H: Conditional Definition of PRECORDCORE 232
193. Window Class Structure Used in Address 236
194. Copying the Win16 Source Files for Migration 237
195. ADDRESS.RC: Changes to ADDRESSICON 244
196. ADDRESS.RC: Changes to ABOUTDLG 244
197. Changes to ADDRESS.RC . 245
198. Selecting "Translate Win Help..." in SMART 245
199. Win Help Translator Dialog Box . 246
200. Makefile for OS/2 . 247
201. ADDRESS.DEF . 247
202. Output of NMAKE During Application Build 248
203. Address Main Dialog under OS/2 250
204. Run-Time Error Message at Program Startup 259
205. Detailed Information on Run-Time Error 260

Figures xiii

xiv Open32 for OS/2 Warp

Tables

1. Maximum Coordinates Allowed . 11
2. VisualAge C++ Compiler Options 83
3. Source Files . 110
4. Mixed Mode Sample Program Source Files 137
5. RGB Color Format on OS/2 and Win32 161
6. Named Pipe Sample Program Source Files 183
7. Procedures Defined in OPEN32TV.C 199
8. Procedures Defined in OS2TV.C . 200
9. Functions Defined in OPEN32IL.C 211

10. Header File Correspondence between Windows and OS/2 214
11. Files for a Custom Translation Control 226
12. Codes for Changes to Address . 238
13. Changes to the Address Source Files 238

 Copyright IBM Corp. 1996 xv

xvi Open32 for OS/2 Warp

Preface

This redbook is intended to provide an overview of developing C/C++
applications which utilize Open32 for OS/2 Warp. It describes techniques for
building applications which utilize the same common source code that can
be compiled and executed on both the OS/2 or Win32 platforms.

In addition to the discussion of developing new applications utilizing
Open32, we explore porting existing Windows 32-bit applications and
Windows 16-bit applications to the OS/2 environment. Tools that are
available to simplify this process are also covered.

Sample programs are provided to illustrate techniques and procedures for
writing programs utilizing Open32. Some samples show applications that
contain only common source code that will execute on either the OS/2 Warp
or Win32 environments, while others are constructed using both common
source code and platform dependent source code sections for the OS/2 and
Win32 environments.

All the files necessary to build and execute the sample applications covered
in this redbook for both the OS/2 and Win32 environments are provided on
the CD-ROM that is included with this redbook. Also on the CD-ROM is a
BookManager version of this redbook so you can view the redbook
electronically.

The sample programs described in this redbook will execute on any OS/2
Warp Version 3 system with Developer API Extensions support from The
Developer Connection for OS/2 Volume 10 along with FixPak 17 or higher
installed. These programs will also execute on any OS/2 Warp Version 4
system which has the Developer API Extensions support built in and is
known as Open32.

This redbook is intended for application development specialists, and
system technical specialists, including IBM customers, business partners,
BESTeam members, system engineers, consultants, and independent
software vendors who are interested in understanding the basic concepts for
developing C/C++ applications that utilize Open32 for OS/2 Warp.

Some knowledge of OS/2 C/C++ and the Windows 32-bit applications is
assumed.

 Copyright IBM Corp. 1996 xvii

How This Redbook Is Organized

This redbook contains 276 pages. It is organized as follows:

• Chapter 1, “Open32 Overview”

This chapter provides a general overview of Open32 including:

- Need for Open32 in OS/2

- Architecture and contents

- Benefits for application developers

- Application development process using Open32

- Tools available to aid the application development process

- Chapter 2, “Tools Used with OS/2 Developer API Extensions”

This chapter discusses the tools that can be utilized to develop
Open32 applications as well as tools that are available to aid in the
porting of Windows 16-bit applications and Windows 32-bit
applications to the OS/2 environment. Topics covered include:

- Where to obtain the tools

- How to install and configure the tools

- How to get started with the tools

- Chapter 3, “Howdy, World!”

This chapter describes the common steps in the process of
application development using Open32. A simple application
example will be discussed. This simple program will step by step
be enhanced showing how standard Win32 resources of menu,
accelerators and dialog boxes added to the program.

- Chapter 4, “MDI Sample Program”

This chapter presents the development of a Multiple Document
Interface program using Open32 functions. The child windows of the
program are capable of presenting bitmap, graphic, screen capture
or text data.

- Chapter 5, “Mixed Mode Sample Program”

This chapter presents the programming technique of separating the
common application code from operating system dependent code
where the Win32 APIs used by the application are not supported by
Open32. The two separate operating system dependent sections
use equivalent OS/2 and Win32 APIs to perform the same function
for the application.

xviii Open32 for OS/2 Warp

- Chapter 6, “Named Pipe Sample Program”

This chapter explores the programming technique of developing
OS/2 function prototypes to provide missing Win32 functions of
Open32. This technique then allows for the porting of a Win32
program to OS/2 without dividing the source code into platform
dependent sections as described in Chapter 5, “Mixed Mode
Sample Program” on page 133.

- Chapter 7, “Tree View Control Sample Program”

This chapter presents the programming technique of providing a
translation layer between the Win32 program and OS/2 functions for
the Windows 95 common controls not supported by Open32. A Tree
View function is implemented as an example of how this technique
can minimize the amount of coding changes required to port a
Win32 application to Open32.

- Chapter 8, “Existing Windows 16-bit Application Ported to OS/2”

This chapter shows the steps required to migrate an existing
Windows 16-bit application to the OS/2 environment and how Open32
simplifies the migration.

- Chapter 9, “Hints and Tips for Open32”

This chapter presents several items to consider when developing
Open32 applications based on the experiences of the authors of this
redbook.

- Appendix A, “Common Problems and Easy Solutions”

This appendix lists the more common programming missteps and
mistakes that the authors of this redbook felt could be encountered
by others working with the Open32 sample programs provided in
this redbook. For each problem listed a solution is provided.

The Team That Wrote This Redbook

This publication was produced by a team of specialists from around the
world working at the International Technical Support Organization Centers in
Austin and Boca Raton.

The project was designed and managed by:

Mike Foster
International Technical Support Organization, Austin Center

Doris Corel
International Technical Support Organization, Boca Raton Center

Preface xix

The authors of this redbook are:

Theo Foster
International Technical Support Organization, Austin Center

Osamu Takagiwa
IBM Japan

Franck Yu
IBM France

Thanks to the following people for the invaluable advice and guidance
provided in the production of this redbook:

Alex Gergor
International Technical Support Organization, Austin Center

Dan Mendrala
IBM Development, Austin

Dave Reich
IBM Development, Austin

Alex Tarpinian
IBM Development, Austin

Comments Welcome

We want our redbooks to be as helpful as possible. Should you have any
comments about this or other redbooks, please send us a note at the
following address:

redbook@vnet.ibm.com

Your comments are important to us!

xx Open32 for OS/2 Warp

Chapter 1. Open32 Overview

Today's PC technologies are changing very fast, introducing new products
and creating new markets. This complicates the already difficult task of
developing applications.

Some of the challenges currently facing software developers as a result of
the quickly changing technologies include:

• Moving from 16-bit applications to 32-bit applications to follow the
current market trend toward 32-bit platforms. This phenomena is being
accelerated by the appearance of Windows 95.

• Keeping track of the emerging technologies, such as object-oriented
programming languages, methods, tools and components.

• Adopting new techniques to optimize development investment, reduce
costs and reduce the software delivery time.

With these challenges, software developers are asking themselves
questions such as: What platform should we support? What object-oriented
technologies should we choose? These are not always easy decisions to
make. Software developers can choose to develop applications for only one
platform. While this decision minimizes development and maintenance cost,
it limits the product's market opportunity, as well as the choices of platforms
the customers may consider.

On the other hand, they can choose to support multiple platforms. This
option enlarges their product's market while at the same time removing the
product's dependency on the success of any one platform. But it takes
more resource to develop, test and maintain these multiple platform
applications.

As for technologies, object-oriented technologies provide powerful tools for
application development and component reuse, but application developers
have a significant investment in procedural applications and development
tools. The transition from procedural to object-oriented code will cost in
terms of money and time.

IBM understands all these concerns and is working hard to be an open
systems provider and to offer application developers cost effective solutions
to create applications that will work across a variety of products, including
hardware and software. The objectives of IBM's solutions for application
developers are to:

 Copyright IBM Corp. 1996 1

• Provide tools and system components that reduce development, test and
maintenance costs

• Leverage a common code base across multiple platforms

• Develop open industry standards, architectures, and parts

• Build upon advanced technologies

To accomplish these objectives, IBM provides the following products:

1. VisualAge family suite, a multiple platform tool set including:

• C/C++, SmallTalk and Cobol compilers

• Open Class Library

• VisualBuilder

• Data Access Builder

• Analysis, test and debugging tools

2. OpenDoc, a multiple platform compound document architecture that
enables the development of object-oriented multiple platform application
components called OpenDoc parts.

3. Open32 that expands OS/2 by providing a subset of the Win32 APIs on
OS/2 for source code compatibility, enabling the migration of Windows
applications to OS/2.

4. Source Migration Analysis Reporting Toolset (SMART) tool that
automates many of the tasks associated with migrating procedural 16-bit
and 32-bit Windows code as well as 16-bit OS/2 code to 32-bit OS/2
code.

5. Hyperwise, a what-you-see-is-what-you-get (WYSIWYG) editor that
enables the authoring of hypertext on-line information and application
help for ø and Windows.

IBM is providing multiple platform solutions for application developers such
that they can spend their resources writing new functions that will make
their applications the best in the market place, while minimizing their efforts
on non-development activities. For those developers who wish to work with
the object-oriented technologies, the IBM VisualAge family product suite
with Open Class Library and OpenDoc can provide a solution.

For those developers who want to continue to develop procedural code or
need to maintain their investment in procedural code applications, Open32
provides a means to expand these applications to multiple platforms. The
focus of this book is to provide technical information about Open32 and the

2 Open32 for OS/2 Warp

tools that can be used to develop applications that incorporate these
extensions.

1.1 Why Open32?

For years, OS/2 has proven to be a secure, highly reliable operating system
for mission-critical and enterprise applications. However, in spite of its
strengths, OS/2 currently has less native PC applications written for it than
those for Windows. Part of the reasons for the lack of native OS/2
applications is not OS/2 itself, but the fact that it is expensive to rewrite
code and later maintain it for multiple platforms.

Most of existing Windows applications are written in a procedural
programming language, the C/C++ language for example, and the
component reuse is quite limited: porting a Windows application to OS/2
usually leads to a rewrite of the majority of modules. Even if it were done,
to keep the function consistent, the code maintenance for Windows and
OS/2 would not be trivial. If application developers can leverage their
investment in Win32 application development by creating functionally
equivalent native OS/2 applications at a small additional cost, there will be
more native applications on OS/2. Applications developers will benefit and,
consequently, OS/2 users will too.

Recognizing this fact, IBM has designed Open32 to ease the task of
migrating existing Windows applications to OS/2. Open32 provides a source
code level portability with the commonly used Win32 APIs. Windows
applications that conform to Open32 can be recompiled to produce a
functionally equivalent OS/2 application. The application then runs on OS/2
and has the look and feel of OS/2. It continues to be available as a Win32
application for Windows 95 and Windows NT.

1.2 Open32 Architecture

As shown in Figure 1 on page 4, Open32 is not Win32 APIs emulation. They
are native OS/2 functions, being built right into the operating system, just
like the other interface layers of OS/2: Control Program (DOS), Control
Program (DOS), Presentation Manager (PM) and Graphics (GPI).

Chapter 1. Open32 Overview 3

Figure 1. Open32 Architecture

For some historical reasons, OS/2 and Win32 APIs have many similarities
either in their syntax and semantics. In many instances, Open32 APIs are
simply wrappers around a similar OS/2 API: when called, they just pass the
control to their OS/2 counterpart to do the job, eventually convert the input
and output arguments and return values when necessary. In the other
cases, extensive code needed to be written underneath the API, and within
OS/2 itself, to perform the required function. However, all these
implementation details are hidden from applications.

1.3 What is Open32?

Open32 are new application programming interfaces (APIs) added to the
OS/2 Warp operating system. These new APIs provide an identical interface
as the corresponding function in the Win32 environment does. The most
commonly used Win32 functions and messages are implemented in Open32
with over 800 Win32 functions and almost all the Win32 messages.
Following are the areas covered by Open32:

1. Base Operating System Services

• Atoms

• Date and time

• Environment

• Memory management

4 Open32 for OS/2 Warp

• Module management

• Printing

• Processes and threads

• Registry

• Resources

• File management

2. Common Dialog Boxes

• Color and font selection

• Opening and closing files

• Printing

• Text find and replace

3. Graphics Device Interface

• Bitmaps, brushes, pens

• Colors and color palettes

• Fonts and text

• Lines, curves, rectangles, polygons, ellipses, chords

• Paths, regions

• Mapping modes, transformations, coordinates

4. Window Management

• Accelerators, carets, cursor, icons, menus, string tables

• Main and Child windows

• Dialog boxes

• Buttons, Combo boxes, edit controls, list boxes, scroll bars

• Messages and message queues

• Rectangles

• Timers

• Dynamic Data Exchange Management Library (DDEML)

• Multiple Document Interface (MDI)

The choice of these APIs is not arbitrary. It is based on a thorough analysis
of more than nine million lines of source code from a variety of shipping
Windows applications, along with input from Independent Software Vendors.

Chapter 1. Open32 Overview 5

1.4 Independent Software Vendors Benefits

The benefits that Open32 represents for independent software vendors are
numerous.

For Windows application developers, Open32 gives them access to the OS/2
market with reduced entry cost while staying on Windows market. Their
applications will benefit from the maturity and robustness of OS/2 and all
the features and functions available on OS/2, such as Workplace Shell
Classes, the System Object Model (SOM) and OpenDoc.

For application developers who have separated source code bases for OS/2
and Windows, Open32 allows them to merge their code into a common
source code base to reduce the application development, test and
maintenance costs.

For OS/2 application developers, they will now have more functions at their
disposal. Open32 can provide a means to port their applications to
Windows 95 and Windows NT.

IBM believes that most application developers will realize an 80% common
code solution for Windows and OS/2 Warp with the remaining 20%
customized to exploit the unique features of each operating environment.

1.5 Tools

Writing applications that utilize advanced graphical user interfaces is both
complicated and time consuming. Luckily, IBM and other venders provide
tools which can aid in the application development process. In this section
we will discuss some tools which you can use to expedite or automate
activities associated with the porting or developing Open32 applications.

1.5.1 OS/2 Warp Toolkit
The OS/2 Warp Toolkit is your main resource for information on OS/2
program development. The toolkit provides you with sample applications,
on-line reference books, and programming tools that make OS/2
programming both easier and faster.

The included sample applications demonstrate how to use almost every part
of the complete OS/2 API. A SOM example shows you how to create new
WorkPlace Shell objects that merge with the operating system and the user
interface. Such objects can be created even for DOS and Windows
programs to allow application integration with OS/2, even without
reprogramming.

6 Open32 for OS/2 Warp

OS/2 Warp Toolkit also includes tools to manipulate resources such as
icons, bitmaps, and fonts. In addition to the regular Icon Editor, Font Editor,
and Dialog Editor, with the OS/2 Warp Toolkit there is now also the new
Universal Resource Editor (URE). URE is a functionally rich tool which
allows you to create and modify many kinds of resources. URE operates
much like the resource editors available for Windows.

1.5.2 VisualAge C++
VisualAge C++ is the standard C/C++ compiler for OS/2. The compiler
includes many additional tools to improve the performance and quality of
your application. Advanced code optimization makes sure that your
programs run as fast as possible with the smallest executable size.

A new linker, ILINK, improves the link time by removing the need for a
prelink step. Additionally, it has a new free-form command line, allowing
you to simply specify files while it figures out how they work together during
linking. For backwards compatibility with LINK386, there is a parameter to
allow the old five-part input file specification.

VisualAge C++ also includes a PM-based interactive debugger with full
support for debugging multiple threaded applications. No bugs stand a
chance against this powerful debugger. Full support for message queue
spying and memory peeking is included.

1.5.3 SMART
The Source Migration Analysis Reporting Tool provides general support for
Windows programmers looking to port their applications to OS/2. SMART
can create custom OS/2 program templates from Windows programs,
allowing the programmer to focus on rewriting the interface for OS/2

When using Open32, however, there is no need to use SMART to port the
original Windows code to OS/2 because Open32 will allow it to compile for
OS/2 without modification. As a result, you will only use the SMART tool to
convert resources. While you could migrate with Open32 without using
SMART, it is not recommended. Manually translating your resource files
would be tedious and time wasting. Additionally, you would have to find a
tool to convert your Windows icons, cursors, and bitmaps to OS/2 format.
SMART handles all of this automatically for you.

1.5.4 Hyperwise
Hyperwise is an IBM product which helps you maintain help files across
several platforms. You can import your current help file or create a new
help document. Hyperwise has advanced editing tools which make it easy
to create links between the pages of your help document.

Chapter 1. Open32 Overview 7

Hyperwise can import files from the RTF and IPF formats, so applications
which currently have Windows or OS/2 help files can migrate to Hyperwise
for future maintenance.

Hyperwise also provides IPF for Windows, which allows you to use your
OS/2 help files with your Windows application.

1.6 Application Design Considerations

The application design considerations for Open32 applications include all of
the traditional application program design considerations for applications
targeted for execution on any single operating system platform. In addition
Open32 applications because they can be compiled and executed on the
three different environments of OS/2, Windows 95 and Windows NT have
additional considerations. Many of these additional considerations arise
from the fact that the three operating environments are different with
features and enhancements that are unique to each.

This section will cover those additional factors that were taken into
consideration in the sample programs developed to illustrate Open32
through out this book.

1.6.1 Common versus Mixed Mode Code
The benefit to application developers of using Open32 when coding their
applications is the ability to use the code they write on the OS/2, Windows
95 and Windows NT platforms. When the application is designed and coded
so that the C/C++ code can be compiled without change when moving it
between platforms can greatly reduce the expense associated with porting
an application between platforms as well as reduce the time required to
make the move. For this reason you want to try to design your application
to use only those Win32 APIs that are supported in all the operating
environments where you intend to execute your application.

Applications and programs that utilize only those Win32 APIs which are
supported on all three platforms can be classified as being Common Code
programs. The HOWDY.C sample program discussed in Chapter 3, “Howdy,
World!” on page 79 and the MDI sample program in Chapter 4, “MDI
Sample Program” on page 103 are examples of a Common Code programs
where the source can be compiled and executed on both the OS/2 and
Win32 platforms without change to the source code of the program.

Because of the requirements of any one application, it may not always be
possible to use only the Win32 APIs available on all three platforms. Thus
you will need to use other programming techniques to minimize the amount
of source code that is not common between the operating system versions

8 Open32 for OS/2 Warp

of your application. The objective of the design that you select should be to
develop a program structure and code base that will minimize the activity
needed to migrate and maintain the application for each of the operating
system environments. Applications that have slightly different source code
depending on the operating system environment where they will be
compiled and executed can be classified as mixed mode programs.

Following is a list of three sample programs that are discussed in this
redbook each of which used a different programming technique for writing
programs that utilize Win32 APIs which are not supported in Open32.

• MIXMODE.C in Chapter 5, “Mixed Mode Sample Program” on page 133

The MIXMODE.C sample uses the technique of separating the common
code from the operating system dependent code where the Win32
window classes used by the application are not supported by Open32.
This technique works where there are equivalent OS/2 native window
classes that provide the same function as the unsupported Win32 APIs in
Open32.

• SERVER.C and CLIENT.C in Chapter 6, “Named Pipe Sample Program”
on page 179

The SERVER.C and CLIENT.C samples use the technique of creating
OS/2 library and header files which implement native OS/2 API's for
Win32 API calls that are not supported by Open32. The advantage of
this technique over the technique used in the mixed mode sample is the
Win32 source code remains unchanged between the Win32 and the OS/2
versions.

• TVTEST.C in 7.1, “How the OS/2 Tree View Control Works” on page 196

The TVTEST.C sample uses the technique of creating OS/2 library and
header files which implement native OS/2 window classes for the Win32
window classes that are not supported by Open32. The advantage of
this technique as with the technique used in the named pipe sample as
compared to the technique used in the mixed mode sample is that the
Win32 source code remains unchanged between the Win32 and the OS/2
versions.

1.6.2 New verses Existing Code
If you are starting a new project, you can plan your use of features and
functions available for all of the operating system environments where your
application will be executed. If your goal is to deliver code that has 100
percent or almost 100 percent portability between the different operating
system environments, you can take this into consideration in your
application design. By selecting and implementing those features and
functions that exist on all platforms you can maximize the use of common

Chapter 1. Open32 Overview 9

code within the application. This was the approach used in the development
of the HOWDY sample program described in Chapter 3, “Howdy, World!” on
page 79.

There will be times when you will want to take an existing application and
migrate it to the Open32 environment to expand its platform coverage. The
original application could be either an OS/2 or Windows application. But,
because of the fact that Open32 is a Win32 API implementation the natural
migration will be from the Windows environment to the OS/2 platform.
Migration of an existing Windows application to Open32 is described in the
sample in Chapter 8, “Existing Windows 16-bit Application Ported to OS/2”
on page 235.

1.6.3 How much can be Shared?
At some point in your application development process you may find that
there are differences between the operating environments which does not
allow for the the complete migration of your source code between platforms.
You need to be aware of these in your application design so that you can
make the correct design decisions for your application. Following are the
differences that were noted during the development of the sample programs
to illustrate Open32 programming throughout this redbook.

1.6.3.1 What is Not Supported?
Open32 is a subset of Win32 APIs. Open32 is targeted at the core operating
system functions of Windows 95 and Windows NT.

Some of base Win32 APIs that are not currently supported are:

• Exception Handling

• Mailslots

• Networks

• OLE

• Pipes

• Plug and Play

• Security

Some of Win32 APIs operating system extensions that are not currently
supported are:

• Multimedia

• MAPI

• Pen

10 Open32 for OS/2 Warp

• TAPI

The Common Controls Library, introduced in Windows 95 and NT V3.5.1 is
not supported including controls such as:

• Image list

• List view and tree view

• Property sheet and tab control

• Rich edit control

• Up-down control, trackbar, progress bar and animation control

• Toolbar and tooltip control

1.6.3.2 What is Different?
Due to underlying differences in OS/2 and Win32 platforms, certain Open32
functions may have different behaviors when performed in Win32 and OS/2.
For example:

• The maximum coordinates allowed in Win32 are not the same as those
allowed in OS/2. Table 1 lists the maximums for both Win32 and OS/2.

• Open32 provides registry function calls, but data storage and retrieval
from the registry requires minor modifications to your code so it can
work on multiple platforms.

• Open32 resource calls are not source compatible with Win32. Except for
LoadResource, which returns a pointer to an OS/2 resource structure,
each API takes a pointer to a resource structure as a parameter. These
functions take/return pointers to OS/2 resource structures - not Win32
resource structures.

• Open32 and OS/2 handles are not always exchangeable. It is
recommended that you do not mix them. In other words, you should not
pass handles that are obtained from Open32 to OS/2 APIs and vice
versa. An exception for this rule is you can create an OS/2 child
window from a Open32 window or vice versa. You can see an example
of this in the mixed mode sample program discussed in Chapter 5,
“Mixed Mode Sample Program” on page 133. You will see it in a
sample program.

Table 1. Maximum Coordinates Allowed

SPACE Win32 OS/2

World/Page -2(31) to 2(31)-1 -2(27) to 2(27)-1

Device -2(27) to 2(27)-1 -2(15) to 2(15)-1

Chapter 1. Open32 Overview 11

• It is recommended that you do not mix Open32 and OS/2 functional
area calls. For example, do not mix Open32 and OS/2 graphics (GDI)
calls.

1.6.3.3 What is the Solution?
The limitations covered in 1.6.3.1, “What is Not Supported?” on page 10 and
1.6.3.2, “What is Different?” on page 11 are not new for Windows application
developers. The same type of problems occur when they try to develop an
application to run on both Windows 95 and Windows NT. Some Win32 APIs
are available on Windows 95 but not on Windows NT, and vice versa, since
parts of the kernel of Windows 95 are still 16-bit. The parameters of many
Win32 APIs, although 32-bit, are actually used as 16-bit. Things can become
even more complicated when you want to keep compatibility with Windows
3.x since you must be restricted to Win32s, a subset of Win32 APIs.

Fortunately many of the unsupported Win32 APIs and common controls have
an equivalent API or class in OS/2 or other IBM products based on OS/2.
For example, you find Pipes in OS/2, Mailslots in LAN Server and OLE
support in OpenDoc. You have OS/2 NoteBook control for Win32 Tab
control, OS/2 Container control for Win32 List view and Tree view, OS/2 Spin
button for Win32 Up-down control, and OS/2 Slider control for Win32
trackbar.

If you design your application with these differences in mind you can build
what is called a mixed mode application that has a large portion of its logic
in a common code segment that uses Open32 APIs along with a platform
specific section that takes advantage of the equivalent APIs or classes for
both the OS/2 and Windows platforms.

1.7 Overview of Scenarios

The major part of this redbook will discuss the development of different
Open32 application programs. Covered first will be applications where the
source code files can be shared between Win32 and OS/2 development
environments starting with Chapter 3, “Howdy, World!” on page 79.
Programs that share the source between the Win32 and OS/2 environments
are know as common source applications.

In Chapter 5, “Mixed Mode Sample Program” on page 133 we will examine
the development of a mixed mode application to address the use of similar
but different OS/2 and Win32 APIs in a single application. In Chapter 6,
“Named Pipe Sample Program” on page 179 and Chapter 7, “Tree View
Control Sample Program” on page 195 two approaches to developing
interfaces or translation code to support Win32 APIs not supported in
Open32. The objective of these techniques is to maintain common source

12 Open32 for OS/2 Warp

code for the application program instead of using the mixed mode technique
discussed in Chapter 5, “Mixed Mode Sample Program” on page 133.

In Chapter 8, “Existing Windows 16-bit Application Ported to OS/2” on
page 235 we discuss the steps needed to migrate an existing Windows 3.1
16-bit application to Open32 so the program can run as a native 32-bit
application on OS/2 Warp.

Other topics covered in this book include a description of the tools used to
develop the Open32 programs presented in this redbook. This is covered in
Chapter 2, “Tools Used with OS/2 Developer API Extensions” on page 15
along with directions for installing these tools from the The Developer
Connection for OS/2 Volume 10 CD-ROM. In Chapter 9, “Hints and Tips for
Open32” on page 251 we include items you may want to consider when
developing you own Open32 applications.

Chapter 1. Open32 Overview 13

14 Open32 for OS/2 Warp

Chapter 2. Tools Used with OS/2 Developer API Extensions

This chapter discusses the tools used in developing, porting and maintaining
Open32 applications using The Developer Connection for OS/2 Volume 10.

The Developer Connection for OS/2 contains a series of CD-ROMs. In The
Developer Connection for OS/2 Volume 10, Disk 1 through Disk 4 are for
OS/2, while additional CDs are for other platforms.

The following list briefly describes the tools required for application
development with Developer API Extensions. They are listed in the order of
recommended installation.

Tool Description

FixPak 17 (XR_W017) An IBM-supplied update for OS/2
Warp and OS/2 Warp Connect.

IBM Developer's Toolkit for OS/2 Warp IBM's developer toolkit for OS/2
Warp and OS/2 Warp Connect.

SMART A program from One Up
Corporation that will automate part
of the conversion process from
Windows to OS/2.

VisualAge C++ IBM's premier C/C++ compiler for
OS/2.

Developer API Extensions (run time) The run-time libraries needed by
OS/2 Warp and OS/2 Warp Connect
to run Developer API Extensions
applications.

2.1 The Developer Connection for OS/2 Volume 10

You can install a complete set of tools that can be used to develop OS/2
applications using Developer API Extensions from The Developer
Connection for OS/2 Volume 10. Before you can install Developer API
Extensions or any other tools from The Developer Connection for OS/2
Volume 10 you will first need to install The Developer Connection for OS/2
Volume 10. See 2.1.1, “Installing The Developer Connection for OS/2
Volume 10” on page 16 which discusses the steps involved in installing The
Developer Connection for OS/2 Volume 10.

 Copyright IBM Corp. 1996 15

If you have installed an earlier edition of The Developer Connection for
OS/2, you will need to install The Developer Connection for OS/2 Volume 10
before proceeding with the installation of any tools from The Developer
Connection for OS/2 Volume 10.

2.1.1 Installing The Developer Connection for OS/2 Volume 10
The following instructions will guide you through The Developer Connection
for OS/2 Volume 10 installation.

1. Put DISC 1 of The Developer Connection for OS/2 Volume 10 in your
CD-ROM drive.

2. Open an OS/2 full-screen or windowed session.

3. Change the current drive to your CD-ROM, for example E:, as shown on
the first command line of Figure 2.

4. Execute DEVCON, as shown on the second command line of Figure 2.

[C:\]E:

[E:\]DEVCON

Figure 2. Installation Command for The Developer Connection for OS/2 Volume 10

5. The Developer Connection for OS/2 Volume 10 installation program will
display the installation screen as shown in Figure 3 on page 17.

16 Open32 for OS/2 Warp

Figure 3. The Developer Connection for OS/2 Volume 10 Installation Window

6. After reading The Developer Connection for OS/2 install instructions,
select Continue to proceed to the next screen as shown in Figure 5 on
page 18.

Note

If you have previously installed any volume of The Developer
Connection for OS/2, you will see the screen shown in Figure 4 on
page 18. If you see this screen, select Update the currently installed
components and press Continue. You can then skip steps 7 through
9.

Chapter 2. Tools Used with OS/2 Developer API Extensions 17

Figure 4. The Developer Connection for OS/2 Volume 10 Installation Option

Figure 5. The Developer Connection for OS/2 Volume 10 Install Screen

7. The default options of Update CONFIG.SYS and Overwrite files are
recommended and are shown as selected in Figure 5. Select OK to
proceed with the installation.

8. You have the following options, as shown in Figure 6 on page 20.

• CATALOG (Run from CD-ROM)

• BROWSER (Run from CD-ROM)

• CATALOG (Run from the hard disk)

• BROWSER (Run from the hard disk)

18 Open32 for OS/2 Warp

Option Space Required

Run from CD-ROM 100KB

The catalog and browser programs will
be copied to your hard drive, but the
catalog data will not. Every time you
access the catalog, you will need to
place a CD from The Developer
Connection for OS/2 Volume 10 into
your CD-ROM drive.

Run from the hard disk 10MB

The catalog and browser programs and
the catalog data will be copied to your
hard disk. When you access the
catalogs you will use the copy on your
hard drive; you will only need The
Developer Connection for OS/2 Volume
10 CDs to install products.

The default is Run from CD-ROM, and for most users the savings in hard
drive space offsets the slower access speed of the CD-ROM drive.

If you want to change to Run from the hard disk, unselect the Run from
CD-ROM and select Run from the hard disk for both the catalog and the
browser.

On the Install-directories dialog you can also specify the directory where
you want the catalogs and The Developer Connection for OS/2 program
installed. The default directory is C:\DEVCON, as shown in Figure 6 on
page 20. You can change to a different drive and directory by typing
over the default value or by using the Disk Space... pushbutton to
display a list of the free space available on your hard drives.

Chapter 2. Tools Used with OS/2 Developer API Extensions 19

Figure 6. The Developer Connection for OS/2 Volume 10 Install - Directories

9. After you have made your selections on the Install-directories screen
shown in Figure 6, you can proceed with the installation by selecting the
Install... pushbutton.

The Install progress dialog will display the status of the installation
activity, as shown in Figure 7 on page 21.

20 Open32 for OS/2 Warp

Figure 7. The Developer Connection for OS/2 Volume 10 Install Progress

After all files are copied, the Installation and Maintenance screen will
appear, as shown in Figure 8.

Figure 8. Installation and Maintenance

10. Select OK on the Installation and Maintenance screen of Figure 8 and
the installation dialogs will close, returning you to The Developer
Connection for OS/2 window as shown in Figure 9 on page 22.

11. Select Exit on the screen of Figure 9 on page 22 to close the installation
window of The Developer Connection for OS/2 Volume 10.

12. Shutdown and reboot your computer before starting The Developer
Connection for OS/2.

Chapter 2. Tools Used with OS/2 Developer API Extensions 21

Figure 9. The Developer Connection Installation Finished

2.1.2 Starting The Developer Connection for OS/2 Volume 10
After installing The Developer Connection for OS/2, you will find The
Developer Connection folder icon on your desktop, as shown in Figure 10.
To start the The Developer Connection for OS/2 Volume 10 catalog, follow
these steps:

1. Double click on The Developer Connection folder icon on your desktop,
as shown in Figure 10. This will open the folder and display the
contents, as shown in Figure 11 on page 23.

Figure 10. The Developer Connection Folder on the Desktop

22 Open32 for OS/2 Warp

Figure 11. The Developer Connection Folder

2. In the Developer Connection folder, double click on the The Developer
Connection for OS/2 folder to open it, which will give you the The
Developer Connection for OS/2 - Icon View as shown in Figure 12.

Figure 12. The Developer Connection for OS/2 Folder

3. Double click on The Developer Connection for OS/2 Catalog to start the
catalog program, which will display to you the Developer Connection
Catalog as shown in Figure 25 on page 32. If you selected to run The
Developer Connection for OS/2 from CD-ROM, you will be prompted to
place The Developer Connection for OS/2 CD into your CD-ROM if you
have not already done so.

Note

The first time you run the catalog, the What's New in Volume 10
window will display, as shown in Figure 13 on page 24. You can
close it by selecting Close from the system menu in the upper-left
corner of the window.

Chapter 2. Tools Used with OS/2 Developer API Extensions 23

Figure 13. What's New in The Developer Connection for OS/2 Volume 10

2.2 FixPak 17 (XR_W017)

To develop or execute Developer API Extensions applications on OS/2 Warp
Version 3 or OS/2 Warp Connect Version 3, you must first install FixPak 17
(XR_W017). It contains a series of changes required by Open32. For
versions of OS/2 beyond 3.00, this is not necessary. For example, OS/2
Warp Version 4 does not require the installation of FixPak 17.

To see if you need to install FixPak 17 on your OS/2 Warp system, use the
VER /R command, as shown in Figure 14 on page 25. If the Revision is 8.241
or greater, you do not need FixPak 17.

24 Open32 for OS/2 Warp

[C:\]VER /R

The Operating System/2 Version is 3.00
Revision 8.241

[C:\]

Figure 14. Revision Level

2.2.1 Installing FixPak 17
To install FixPak 17:

1. Insert Disc 4 of The Developer Connection for OS/2 Volume 10 in your
CD-ROM.

2. Open an OS/2 Windowed Command prompt from the Command Prompt
folder.

3. Change to your CD-ROM drive, as shown in the first line of Figure 15.

[C:]E:

[E:\]CD \SERVICES\FIXPAK

[E:\]SERVICE

Figure 15. Starting Corrective Service Facility

4. Change to the SERVICES FIXPAK directory, as shown on the second line
of Figure 15.

5. Enter SERVICE to begin Corrective Service Facility, as shown on the third
line of Figure 15.

6. The Corrective Service Facility Product Information dialog box will
display, as shown in Figure 16 on page 26. Select OK to continue with
the installation of FixPak 17.

Chapter 2. Tools Used with OS/2 Developer API Extensions 25

Figure 16. Corrective Service Facility Product Information

7. You will then see the Select Source Drive dialog box, shown in
Figure 17. Select your CD-ROM drive and press OK to continue.

Figure 17. Select Source Drive Dialog Box

You will see the wait box shown in Figure 18 on page 27. Please be
patient while the Corrective Service Facility inspects your system.

26 Open32 for OS/2 Warp

Figure 18. Please be Patient

8. After the inspection is completed, the Corrective Service Facility will
display a list of serviceable products. In most installations, it will list
one IBM OS/2 Base Operating System and, if you installed multimedia
support, one IBM Multimedia Presentation Manager/2, as shown in
Figure 19. If you have more than one copy of OS/2, deselect any copies
you do not want serviced.

Figure 19. Corrective Service Facility: Serviceable Products

9. After you have selected which products you want serviced, select the
Service button to begin updating the components.

10. The Corrective Service Facility will prompt you for an Archive path, as
shown in Figure 20 on page 28. The path must be unique for each
product to be serviced. When you have typed in a path for each
product, select the OK button.

Chapter 2. Tools Used with OS/2 Developer API Extensions 27

Figure 20. Corrective Service Facility: Archive Path Prompt

11. The Corrective Service Facility needs to update files which are in use by
OS/2, so it will show you a list of files which are locked, as shown in
Figure 21. Select Continue to allow it to handle the locked files
automatically.

Figure 21. Corrective Service Facility: Locked Files

28 Open32 for OS/2 Warp

The Corrective Service Facility will display a progress window, shown in
Figure 22 on page 29, while it updates files. This process can take up to
forty minutes, so be patient. You may not use OS/2 while the system is
being serviced.

Figure 22. Corrective Service Facility: Progress Window

12. During the service process, you may be prompted for Service
Permission, as shown in Figure 23 on page 30. You should select OK to
allow Corrective Service Facility to update the file.

Chapter 2. Tools Used with OS/2 Developer API Extensions 29

Figure 23. Corrective Service Facility: Service Permission

13. When Corrective Service Facility finishes updating your system, the
Corrective Service Facility Message box will display, as shown in
Figure 24. Select Exit to close Corrective Service Facility.

Figure 24. Corrective Service Facility: Service Complete

14. Shut down your computer and reboot. During OS/2 start up, locked files
which could not be accessed while OS/2 was running will be updated.
Your computer may automatically reboot after locked files are updated.

30 Open32 for OS/2 Warp

2.3 OS/2 Warp Toolkit

One of the tools that you will need for developing applications that utilize
Developer API Extensions for OS/2 Warp is the OS/2 Warp Toolkit.

This section briefly describes installing the OS/2 Warp Toolkit from The
Developer Connection for OS/2 Volume 10 CD-ROM.

2.3.1 Installing OS/2 Warp Toolkit
The Developer Connection for OS/2 Volume 10 includes the latest version of
the Toolkit package. This is the toolkit you will need to use to develop
Open32 applications on OS/2 Warp.

You can install the OS/2 Warp Toolkit from the The Developer Connection
for OS/2 catalog by performing the following steps:

1. Start The Developer Connection for OS/2 Catalog by following the steps
outlined in 2.1.2, “Starting The Developer Connection for OS/2 Volume
10” on page 22. The catalog of The Developer Connection for OS/2
Products will then be displayed, as shown in Figure 25 on page 32.

Chapter 2. Tools Used with OS/2 Developer API Extensions 31

Figure 25. The Developer Connection for OS/2 Volume 10 Catalog

2. Double click on the item Developer Toolkits (Discs 2/3), shown
highlighted in Figure 25. The menu shown in Figure 26 on page 33 will
be displayed.

3. Double click on Toolkits.

32 Open32 for OS/2 Warp

Figure 26. Developer Toolkits Menu

Chapter 2. Tools Used with OS/2 Developer API Extensions 33

Figure 27. Toolkits Available in The Developer Connection for OS/2

4. You will see the list of toolkits available on The Developer Connection
for OS/2. At the bottom of the list is The Developer's Toolkit for OS/2
Warp, Version 3 (IBM): CD Install, as shown in Figure 27. Double click
on it to see information about the OS/2 Warp Toolkit, as shown in
Figure 28 on page 35.

34 Open32 for OS/2 Warp

Figure 28. Information about OS/2 Warp Toolkit

5. Double click on Install me! to start the OS/2 Warp Toolkit installation.

If the Disc request dialog, shown in Figure 29 on page 36, appears, it
could be because the disc in the CD-ROM drive is not Disc 3 or the drive
letter is not a valid CD-ROM drive. Make sure that Disc 3 and the drive
letter are correct. Select the OK pushbutton of the Disc request dialog to
continue the installation.

Chapter 2. Tools Used with OS/2 Developer API Extensions 35

Figure 29. Disc Request Screen

The IBM Developer's Toolkit for OS/2 Warp Installation Warning window
as shown in Figure 30 will be displayed before OS/2 Warp Toolkit
installation begins. If you have not installed FixPak 17, see 2.2, “FixPak
17 (XR_W017)” on page 24.

Note

You will receive the warning even after FixPak 17 is installed. If you
are not sure if you need to install the FixPak 17, or if you do not
know if it has already been installed, see 2.2, “FixPak 17 (XR_W017)”
on page 24.

6. When you are ready to continue with the installation of the OS/2 Warp
Toolkit, push OK on the warning dialog.

Figure 30. Installation-Warning Screen

36 Open32 for OS/2 Warp

The Developer's Toolkit is comprised of several items. You can select
to install all or part of the items from the list of installable components
shown in Figure 31 on page 37.

Figure 31. Installation Selection Screen

Following is an expanded list of items that can be installed from the
installable component list of the IBM Developer's Toolkit for OS/2 Warp.
The items that are required or recommended to be installed to support
Open32 application development are noted below. If you do not want to
install all of the components you can select only the items marked as
required.

• Development Tools

- Base Tools (Required)

• Toolkit Information

- Control Program Guide and Reference

- Graphics Program Guide and Reference

- Presentation Manager Guide and Reference

- IBM Developer API Extensions for OS/2 Guide (Recommended)

• Headers and Libraries

- OS/2,PM & MM C/C++ Headers (Required)

- Libraries (Required)

• Sample Programs

Chapter 2. Tools Used with OS/2 Developer API Extensions 37

- Developer API Extensions Samples (Recommended)

• Try Me!

- Development Tools

- OpenDoc Tools

- Sample Programs

• Multimedia Bitmaps

• BETA

- BETA Entertainment Support

If you choose to install all of the components for the Developer's Toolkit
for OS/2 Warp you must specify a hard drive with over 94MB of free
space. By changing the destination drive the available space on that
drive will be displayed in the Disk space information area.

If you select to install only the required and recommended items as
shown in the above list, you need only 18MB of space on your hard disk
as shown in Figure 32.

Figure 32. Installation Selection (Minimum) Screen

To select or deselect an item for installation, highlight the item in the list
and press the Select or Deselect pushbutton. Only the items with a
check mark next to their names will be installed.

If you need to change the installation options, such as whether or not to
update CONFIG.SYS, push the Options button at the bottom of the

38 Open32 for OS/2 Warp

installation window. This will display the Installation options dialog
shown in Figure 33 on page 39. For most installations, the default
options shown are correct and do not require any changes.

Figure 33. Installation Options Dialog

7. After you have set the options as you want, press the OK button to close
the dialog and save your option settings.

8. Select the Install button on the installation screen shown in Figure 32 on
page 38 to start the install of the IBM Developer's Toolkit for OS/2
Warp.

9. The install program will begin to copy files to your hard drive. The
Installation Status window will appear as shown in Figure 34 on page 40
to show the progress of the installation.

Chapter 2. Tools Used with OS/2 Developer API Extensions 39

Figure 34. Installation Status Screen

10. Once all the files have been copied you will be informed of the
successful installation with the Installation Status window as shown in
Figure 35.

Figure 35. Installation Status Screen

11. Select OK to close the installer.

After the installation has completed, you will need to shutdown and
reboot your computer, because CONFIG.SYS has been changed by the
installation of the IBM Developer's Toolkit for OS/2 Warp. Rebooting the
computer will make these changes take effect and complete the
installation process.

2.3.2 Configuring the Resource Compiler
The Resource Compiler is used in OS/2 program development to convert
human-readable text descriptions of program resources into binary format.
The resources for your Open32 application must be compiled with the latest

40 Open32 for OS/2 Warp

version of the Resource Compiler, which ships with the OS/2 Warp Toolkit
on The Developer Connection for OS/2. This version supports string IDs for
application resources, just as Windows does.

Note

You should check your Resource Compiler even if you do not plan to use
string IDs. It is important that you always use the latest version of the
Resource Compiler for all Developer API Extensions application
development.

There are many ways to find and rename the Resource Compilers which will
not work with Open32 application development. We will outline one way
which uses the OS/2 Workplace Shell.

To make sure that only the latest Resource Compiler is used:

1. Select Find from the launch pad as shown in Figure 36.

Figure 36. Launch Pad

2. The Find Objects window will be displayed. Enter the name RC.EXE as
shown in Figure 37, then select the Find button.

Figure 37. Find Objects

Chapter 2. Tools Used with OS/2 Developer API Extensions 41

The Searching Progress window will be displayed as shown in Figure 38
on page 42.

Figure 38. Searching Progress

The find program will now search all of your hard disk drives for the
RC.EXE file. The time the search takes depends on the number of
directories and files on your hard disk drives. When all the drives have
been searched, a Find Results Screen - RC.EXE window similar to the
one in Figure 39 will be displayed.

Figure 39. Find Results

3. Click the second mouse button on the first RC.EXE to display the
object's menu. Select the Settings menu item. The file's Settings
notebook will be displayed. Select the File tab to show the notebook
page in Figure 40 on page 43

42 Open32 for OS/2 Warp

Figure 40. RC.EXE: Settings Notebook--File tab

4. Select the right arrow in the lower right corner of the Settings notebook.
This will display a notebook page similar to the one shown in Figure 41
on page 44.

Chapter 2. Tools Used with OS/2 Developer API Extensions 43

Figure 41. Correct Resource Compiler File

The version of Resource Compiler that comes on The Developer
Connection for OS/2 Volume 10 IBM Developer's Toolkit for OS/2 Warp
has a creation date of 3-12-96 as shown in Figure 41.

5. For all the Resource Compilers that have creation dates earlier than
3-12-96, you will need to rename them so they are not used in place of
the RC.EXE from the IBM Developer's Toolkit for OS/2 Warp.

For example the Resource Compiler that comes with OS/2 Warp can be
seen in Figure 42 on page 45 with a creation date of 10-31-94.
Figure 43 on page 46 shows renaming RC.EXE to RC.EXO in the title
area of the General tab of the Settings notebook. After typing in the new
name in the title area, close the Settings notebook to make the change.

44 Open32 for OS/2 Warp

Figure 42. Earlier Resource Compiler File

Chapter 2. Tools Used with OS/2 Developer API Extensions 45

Figure 43. Other Resource Compiler General tab

6. Repeat steps 3 through 5 for every file in the Find Results dialog box.
When you are finished, the only file with the name RC.EXE should be the
one installed with the OS/2 Warp Toolkit, dated 11-15-95.

7. Close the Find Results - RC.EXE dialog box by selecting the Close
pushbutton.

2.3.3 Where to Learn More About the Toolkit
Once you have installed the Toolkit, you can find more information about the
OS/2 Warp Toolkit in the Toolkit Information folder. Figure 44 on page 47
shows the different on-line documents that are available.

46 Open32 for OS/2 Warp

Figure 44. Toolkit Information Folder

Depending on the components you selected to install on the installation
menu as shown in Figure 31 on page 37, the documents you have in the
Toolkit Information folder may not match those shown in Figure 44.

2.4 SMART

The SMART tool from One Up Corporation automates the conversion of
Win32 resources to OS/2. It will translate your Resource Compiler file into
OS/2 format and convert Win32 format bitmaps and icons to OS/2 format.

2.4.1 Installing SMART
To install SMART:

1. Start the Developer Connect catalog by following the steps outlined in
2.1.2, “Starting The Developer Connection for OS/2 Volume 10” on
page 22.

2. The catalog of The Developer Connection for OS/2 Products will then be
displayed, as shown in Figure 45 on page 48.

3. Double click on Development Tools (Disc 1) from The Developer
Connection for OS/2 Products main menu shown in Figure 45 on
page 48.

Chapter 2. Tools Used with OS/2 Developer API Extensions 47

Figure 45. The Developer Connection for OS/2 Products Main Menu

4. Double click on SMART-Version 2.1 (One Up Corp), shown in Figure 46
on page 49.

48 Open32 for OS/2 Warp

Figure 46. Development Tools in The Developer Connection for OS/2 Volume 10

5. After reading the information on SMART, you can double click on Install
me!, shown in Figure 47 on page 50, to begin the installation of SMART.

Chapter 2. Tools Used with OS/2 Developer API Extensions 49

Figure 47. Information about SMART-Version 2.1 in The Developer Connection for OS/2 Volume 10

6. The SMART Installation window, shown in Figure 48 on page 51, will
appear. Select the Install menu item.

50 Open32 for OS/2 Warp

Figure 48. SMART Installation Window

7. The SMART Paths window will open to allow you to select the
installation target drive and directory. The Installation Source should be
your CD drive. Type the directory where you want SMART installed in
the Target Installation box, shown in Figure 49

Figure 49. SMART Installation: Source and Target Paths

8. The Installation Setup Options window will open. You should install the
Win32 -> OS/2 2.1 migration table, the SMART Editor, and the SMART
Aux. Files, as shown in Figure 50 on page 52. If you will be using
SMART to migrate applications for Windows 3.1 or OS/2 1.3, you can
optionally, install those migration libraries.

For performance reasons, it is recommended that you install SMART to
your hard disk and not run it from the CD drive.

Chapter 2. Tools Used with OS/2 Developer API Extensions 51

Figure 50. SMART Installation Setup Options

Note

The Application DLL drive/directory and CONFIG.SYS drive may vary
from system to system. The default settings are appropriate.

9. After you have selected your installation options, select the Proceed
pushbutton to begin copying files.

10. The Installing SMART window, shown in Figure 51, will appear while the
files are copied to your hard drive.

Figure 51. Installing SMART Window

52 Open32 for OS/2 Warp

11. After the files are copied, the CONFIG.SYS Maintenance window will
appear, as shown in Figure 52 on page 53. Select Ok=Continue to
allow SMART to modify your CONFIG.SYS file.

Figure 52. SMART Installation--CONFIG.SYS Maintenance

12. In most cases, no changes will be needed to CONFIG.SYS, and you will
see the window shown in Figure 53. Select Ok to continue.

Figure 53. SMART Installation--Changes Complete

13. You will be left at the SMART Installation - edit CONFIG.SYS window,
shown in Figure 54 on page 54. Select Ok=Complete to finish the
installation.

Chapter 2. Tools Used with OS/2 Developer API Extensions 53

Figure 54. SMART Installation - Edit CONFIG.SYS

14. You will then see the SMART Installation - CONFIG.SYS window shown
in Figure 55 on page 55. Select Ok=Continue to allow SMART to
replace your CONFIG.SYS with the modified version.

54 Open32 for OS/2 Warp

Figure 55. SMART Installation - CONFIG.SYS

15. The SMART Installation - Completed window, shown in Figure 56, will
appear. After reading it, press Ok to close it.

Figure 56. SMART Installation - Completed

16. You will return to the main SMART window shown in Figure 48 on
page 51. Select Exit from the menu to close the installation program.

17. Shut down your computer and reboot to enable the changes SMART has
made to your machine.

Chapter 2. Tools Used with OS/2 Developer API Extensions 55

Note

You should reboot your computer even if no changes were made to
CONFIG.SYS.

2.4.2 Where to Learn More About SMART
You can find more information about SMART in the SMART2 Toolset folder,
which is created during SMART installation. The folder is shown in
Figure 57.

Figure 57. SMART2 Toolset Folder on the Desktop

Double click on the folder to open it. The folder's contents are shown in
Figure 58.

Figure 58. SMART2 Toolset Folder Contents

56 Open32 for OS/2 Warp

2.5 VisualAge C++

You will need to select and install a C/C++ compiler for OS/2 that can be
used to build Open32 applications.

This section describes the installation of the VisualAge C++ Trial Version
that is included on The Developer Connection for OS/2 Volume 10.

2.5.1 Installing VisualAge C++
VisualAge C++ is the newest release of IBM's C/C++ compiler for for
OS/2. A sixty-day trial copy can be found on The Developer Connection for
OS/2 Volume 10.

To install VisualAge C++:

1. Start the The Developer Connection for OS/2 Catalog by following the
steps outlined in 2.1.2, “Starting The Developer Connection for OS/2
Volume 10” on page 22.

2. The catalog of The Developer Connection for OS/2 Products will then be
displayed, as shown in Figure 59 on page 58.

3. Double click on Compilers (Disc 4), shown highlighted in Figure 59 on
page 58. You will be shown the list of compilers shown in Figure 60 on
page 59.

Chapter 2. Tools Used with OS/2 Developer API Extensions 57

Figure 59. The Developer Connection for OS/2 Volume 10 Catalog

58 Open32 for OS/2 Warp

Figure 60. Compilers Available on The Developer Connection for OS/2 Volume 10

4. Double click on Visual Age C++ for OS/2, Version 3.0 (IBM), shown in
Figure 60, and the information about VisualAge C++ will be displayed
as shown in Figure 61 on page 60.

Chapter 2. Tools Used with OS/2 Developer API Extensions 59

Figure 61. Information about VisualAge C++

5. After reading the information about VisualAge C++ for OS/2, you can
double click on Install me! in the lower left corner of the information
panels to start the VisualAge C++ installation program.

You will be presented with the Welcome to VisualAge C++ Version 3.0
as shown in Figure 63 on page 61.

If the Disc request dialog, shown in Figure 62 on page 61, appears, it
could be because the disc in the CD-ROM drive is not DISC 4 of The
Developer Connection for OS/2 Volume 10 or the drive letter is not a
valid CD-ROM drive. Make sure that Disc 4 and the drive letter are
correct, then select the OK pushbutton of the Disc request dialog to start
the installation.

60 Open32 for OS/2 Warp

Figure 62. Disc Request Screen

Figure 63. Welcome to VisualAge C++

6. You should read the IBM Evaluation Agreement in the Welcome to
VisualAge C++ Version 3.0 window before proceeding. If you agree to
the terms of the agreement, select Continue.

Chapter 2. Tools Used with OS/2 Developer API Extensions 61

Figure 64. VisualAge C++ Install

7. The Install dialog will be displayed. It gives you the options of updating
CONFIG.SYS and overwriting files. The default options of Update
CONFIG.SYS and do not Overwrite files are recommended. When the
options are set the way you want, select OK on the Install dialog and the
Installation-directories dialog will appear, as shown in Figure 65 on
page 63.

The Install-directories panel, shown in Figure 65 on page 63, allows you
to select the components of VisualAge C++ to be installed. You can
also specify where you want the files to be placed on your hard disk.

62 Open32 for OS/2 Warp

Figure 65. VisualAge C++ Install-Directories

The following list outlines the contents of VisualAge C++ and gives
recommendations on what portions to install for Open32 development.

Item Name Recommendation

Compiler and Runtime Libraries Required

WorkFrame Recommended

PM Debugger Recommended

Class Browser Not required

Performance Analyzer Not required

Visual Builder Not required

Data Access Builder Not required

Editor Recommended only if you
have not selected an editor
for the OS/2 platform

Chapter 2. Tools Used with OS/2 Developer API Extensions 63

IBM Open Class Library Not required

Standard Class Library Not required

Documentation Recommended

Samples Not required

Warp Toolkit Development Tools Not Required

Warp Toolkit Information Not Required

Warp Toolkit Headers & Libraries Not Required

Warp Toolkit Sample Programs Not required

Warp Toolkit Multimedia Bitmaps Not required

You can reduce the items to be installed by deselecting them in the
Select the components that you want to install list box. This is done by
a single click of mouse button one on the items to be deselected.

The minimum installation (including only required and recommended
items) requires about 80MB as shown in Figure 66.

Figure 66. VisualAge C++ Minimum Install

64 Open32 for OS/2 Warp

Complete installation of VisualAge C++ requires about 200MB of disk
space.

8. After you have selected the components you want to install you may
want to change the install to directories. Edit the directory names on
the Install - directories dialog or click on Disk space... to view the free
space on your hard drives and optionally choose one for installation.
The Disk space dialog is shown in Figure 67.

Figure 67. VisualAge C++ Disk Space

The Disk space dialog, shown in Figure 67, shows you the free space
available on your hard drives. You can change the drive VisualAge
C++ will be installed to by highlighting the drive in the list and check
the Change directories to selected drive box. Click on OK to select the
drive and return to the Install - directories dialog.

9. After you have selected which parts of VisualAge C++ to install and
where to put them on your computer, select the Install... pushbutton to
begin copying files to your computer.

The Install - progress window, shown in Figure 68 on page 66 will
appear to display the files being copied and to show the progress of the
installation.

Chapter 2. Tools Used with OS/2 Developer API Extensions 65

Figure 68. VisualAge C++ Install - Progress

After the copying process is finished, the dialog shown in Figure 69 will
appear to notify you that VisualAge C++ was successfully installed on
your computer.

Figure 69. VisualAge C++ Successfully Installed

10. Select the OK pushbutton on the Installation and Maintenance window
as shown in Figure 69 to close the message window.

11. Select the Exit pushbutton on the IBM VisualAge C++ Trial Copy
window as shown in Figure 70 on page 67 to close the installation
window.

66 Open32 for OS/2 Warp

Figure 70. VisualAge C++ Installation Window

12. Shut down OS/2 and restart your computer.

The second phase of installation will be started automatically in a
windowed command as shown in Figure 71 on page 68.

Chapter 2. Tools Used with OS/2 Developer API Extensions 67

Wincreateobject C main template succeeded
Creating Project Smarts object. . .
Wincreateobject Project Smarts succeeded
Updating 18 shell projects (this will take a few minutes)...
1 done.
2 done.
3 done.
4 done.
5 done.
6 done.
7 done.
8 done.
9 done.
10 done.
11 done.
12 done.
13 done.
14 done.
15 done.
16 done.
17 done.
18 done.
All shell projects updated.
Populating Smarts catalog with entries...

Figure 71. Install Phase 2

The windowed command will close automatically.

Figure 72. VisualAge C++ Folder on Desktop

13. After OS/2 finishes booting, open the VisualAge C++ Trial Copy by
double clicking on its icon on the desktop, shown in Figure 72.

The VisualAge C++ folder, shown in Figure 73 on page 69, will
appear.

68 Open32 for OS/2 Warp

Figure 73. VisualAge C++ Folder

2.5.2 Where to Learn More About VisualAge C++
You can find on-line documents in the VisualAge C++ folder.

1. Open the VisualAge C++ Information folder by double clicking on its
icon, as shown in Figure 73.

2. The VisualAge C++ Information folder contains many documents, as
shown in Figure 74 on page 70, which you may want to study at your
convenience.

Chapter 2. Tools Used with OS/2 Developer API Extensions 69

Figure 74. VisualAge C++ Information Folder

2.6 Developer API Extensions

The Developer API Extensions are a set of dynamic link libraries that
provide Open32 applications with procedures that are functionally equivalent
to the standard Win32 APIs. You must install these extra DLLs on your OS/2
Warp or OS/2 Warp Connect computer to run the Open32 applications you
develop. OS/2 Warp Version 4 has the extensions built-in, so if you are
running OS/2 Warp Version 4, you can skip this step and proceed to the first
sample Open32 program found in Chapter 3, “Howdy, World!” on page 79.

2.6.1 Installing Developer API Extensions
The Developer API Extensions are shipped on The Developer Connection for
OS/2 Volume 10 for installation on OS/2 Warp and OS/2 Warp Connect. If
you are using OS/2 Warp Version 4, you do not need to install the Developer
API Extensions; it is built into the base operating system. Installation
requires approximately 2.5MB on your OS/2 hard drive.

To install Developer API Extensions:

70 Open32 for OS/2 Warp

1. Start The Developer Connection for OS/2 Catalog by following the steps
outlined in 2.1.2, “Starting The Developer Connection for OS/2 Volume
10” on page 22. The catalog of The Developer Connection for OS/2
Products will be displayed as shown in Figure 75 on page 71.

2. Double click on IBM OS/2 (Discs 1/2/3) from The Developer Connection
for OS/2 Volume 10 main menu shown in Figure 75. This will open the
list of IBM OS/2 products shown in Figure 76 on page 72.

Figure 75. The Developer Connection for OS/2 Volume 10 Catalog

Chapter 2. Tools Used with OS/2 Developer API Extensions 71

Figure 76. IBM OS/2 Products Available on The Developer Connection for OS/2 Volume 10

3. Double click on Developer API Extensions for OS/2 (IBM) from the menu
shown in Figure 76. You will see the information panels on Developer
API Extensions for OS/2 (IBM), shown in Figure 77 on page 73.

72 Open32 for OS/2 Warp

Figure 77. Developer API Extensions Information Screen

4. After reading the information about the IBM Developer API Extensions
for OS/2, you can double click on Install me! to start the Developer API
Extensions installation program.

5. Developer API Extensions installation will display the install dialog
window shown in Figure 78 on page 74. Press OK to continue with the
installation.

Chapter 2. Tools Used with OS/2 Developer API Extensions 73

Figure 78. Developer API Extensions Install

The Install - directories window will appear as shown in Figure 79 on
page 75.

74 Open32 for OS/2 Warp

Figure 79. Developer API Extensions Install - Directories

6. Select IBM Developer API Extensions for OS/2 in the Select the
components that you want to install: list box.

Note

The Developer API Extensions will be installed to your OS/2 system
directories by default. You should not change the location where the
files will be copied.

7. Select the Install... pushbutton to begin copying files.

You will see the Install - progress window as shown in Figure 80 on
page 76 during the installation.

Chapter 2. Tools Used with OS/2 Developer API Extensions 75

Figure 80. Developer API Extensions Install - Progress

8. Once all the files have been copied you will be informed of the
successful installation with the Installation Status window as shown in
Figure 81. Select OK to close it.

Figure 81. Developer API Extensions Successfully Installed

9. Close the installation program by selecting the Exit pushbutton, as
shown in Figure 82 on page 77.

76 Open32 for OS/2 Warp

Figure 82. Developer API Extensions Installation

10. After the installation has completed, you will need to shut down and
reboot your computer because some system files have been added.
Rebooting the computer will load these new files to allow the Developer
API Extensions system to work properly.

Chapter 2. Tools Used with OS/2 Developer API Extensions 77

78 Open32 for OS/2 Warp

Chapter 3. Howdy, World!

In this chapter we will step through the process of migrating a simple
Windows 32-bit application to an OS/2 32-bit application using Developer API
Extensions. The application analyzed in this chapter should be quite
familiar to all programmers; it simply displays "Howdy!" in its client window.

After we have looked at the basic steps involved in migrating an application,
we will discuss the migration of programs with additional functions,
including:

• Menu bar

• Keyboard accelerators

• Dialog boxes

In 3.2, “Enhancing Your Application” on page 92, we will add each of these
common window controls to the Howdy application and show any additional
steps needed to use them in an Open32 application.

3.1 Overview of the Migration Process

Figure 83 on page 80 shows the files used in both Win32 and Open32
application development. The primary C source code and header file are
shared between the two platforms, while the resources and other files are
platform dependent. In this chapter we will begin with a completely
functioning Win32 application and modify it so that it can be compiled for
either Windows or OS/2.

 Copyright IBM Corp. 1996 79

Figure 83. Structure of Howdy Source Files for Both Platforms

The migration process consists mostly of converting the source files from
their original Win32 format to OS/2 format. Some files require only a few
simple changes, while others must be processed by automated conversion
programs. The general order recommended for converting the files is:

1. Copy the all source files to a new location.

2. Change all <windows.h> references to <os2win.h>.

3. Recompile C/C++ source code.

4. Convert Resource Compiler files.

5. Convert graphical resources (such as icons and bitmaps).

6. Compile resources.

7. Compile MAIN.C.

8. Create a new DEF file.

9. Link the application and bind the resources.

80 Open32 for OS/2 Warp

10. Run and test the new OS/2 application.

This order is recommended but is not required. You will most likely create
a makefile and use NMAKE to automate the compilation process and
possibly the migration process. In this chapter, a makefile is not used to
show you the individual programs used to migrate and compile the Howdy
application. A makefile is provided on the CD-ROM for both Windows and
OS/2.

3.1.1 Copying the Source Files
The migration process is best done by replacing Win32 format files with
OS/2 format files with the same name. Because this will erase or rename
the Win32 format files in the working directory, we recommend that you copy
the files to a separate directory before migrating. For the Howdy
application, the original Win32 source code is in HOWDY BASE WIN32 on
the CD-ROM. To step through the migration process on your own computer,
copy the files to your hard drive. The recommended location is
OPEN32 HOWDY BASE MIGRATE on any drive. See Figure 84 on page 82

for an example.

Chapter 3. Howdy, World! 81

[D:\]MD OPEN32

[D:\]MD OPEN32\HOWDY

[D:\]MD OPEN32\HOWDY\BASE

[D:\]MD OPEN32\HOWDY\BASE\MIGRATE

[D:\]CD OPEN32\HOWDY\BASE\MIGRATE

[D:\OPEN32\HOWDY\BASE\MIGRATE]COPY F:\HOWDY\BASE\WIN32*
F:\HOWDY\BASE\WIN32\HOWDY.MAK
F:\HOWDY\BASE\WIN32\HOWDY.RC
F:\HOWDY\BASE\WIN32\HOWDY.ICO
F:\HOWDY\BASE\WIN32\HOWDY.EXE
F:\HOWDY\BASE\WIN32\HOWDY.C
F:\HOWDY&Bsl.BASE\WIN32\HOWDY.H

6 file(s) copied.

[D:\OPEN32\HOWDY\BASE\MIGRATE]

Figure 84. Copy the Source Files from the CD-ROM to your Hard Drive

3.1.2 Changing the Source Code
For the Howdy program, only one small change is required in the source
code. The one item that needs to be changed is the name of the included
header file in HOWDY.C. Normally, Win32 applications include WINDOWS.H,
but to compile as a Developer API Extensions application they must instead
include OS2WIN.H. You can comment out the original include statement and
replace it, as shown in Figure 85. In 3.2, “Enhancing Your Application” on
page 92, we will look at a way of letting the compiler choose the correct
include file.

//#include <windows.h>
#include <os2win.h>

Figure 85. Changes to HOWDY.C

82 Open32 for OS/2 Warp

3.1.3 Recompiling the Source Code
After the header statement has been changed for OS/2 as described in 3.1.2,
“Changing the Source Code” on page 82, you are ready to recompile the
source code. Figure 86 shows how to invoke the VisualAge C++ compiler
from the OS/2 command prompt with the recommended options. An
explanation of the compiler options is given in Table 2.

Table 2. VisualAge C++ Compiler Options

Option Meaning

/c Compile the source file into an object (OBJ) file,
but do not invoke the linker.

/Ss Allow the double-slash (//) to be used as a
one-line comment.

[D:\OPEN32\HOWDY\BASE\MIGRATE]icc /c /Ss howdy.c
IBM VisualAge C ++ for OS/2, Version 3
(C) Copyright IBM Corp. 1991, 1995.
- Licensed Materials - Program Property of IBM - All Rights Reserved.

[D:\OPEN32\HOWDY\BASE\MIGRATE]

Figure 86. Recompiling HOWDY.C

3.1.4 Converting Resource Compiler Files
You also use the SMART tool to convert your Win32 Resource Compiler files
to OS/2 format. Select Translate Resources from the SMART menu, as
shown in Figure 87 on page 84.

Chapter 3. Howdy, World! 83

Figure 87. Selecting Translate Resources

SMART will open the Resource Translation dialog box, shown in Figure 88
on page 85. Select the name of the Resource Compiler file to be translated
at the top of the dialog box. If you used String IDs in the resource file, you
will need to check the box next to Support String ID.

You also have the option of using a Mapping Mask to rename files as they
are processed. Since we are migrating the application in place, we select
Overwrite Original. SMART will the save the old Win32 file under the name
HOWDY.RCX and will name the new OS/2 file HOWDY.RC.

84 Open32 for OS/2 Warp

Figure 88. Resource Translation Dialog Box

After SMART finishes processing the Resource Compiler file, it will show
you the results. Your results should look similar to those shown in
Figure 89.

SMART Windows to OS/2 Resource Translation Version 1.00

Copyright (c) 1993, 1994 One Up Corporation

Command line:
g:\SMART\SMARTRC.EXE -G 850,1004 -R -X *.??X -E F:\OPEN32\HOWDY\BASE\MIGRATE\HOWDY.ERR -S
F:\OPEN32\HOWDY\BASE\MIGRATE\HOWDY.SUM F:\OPEN32\HOWDY\BASE\MIGRATE\HOWDY.RC

I1003 Converting from code page <1004> to code page <850>

Figure 89. Results of the Resource Compiler Translation

Chapter 3. Howdy, World! 85

3.1.5 Converting the Resources
The next step in the conversion process is to convert Win32 Resource
Compiler files to OS/2 format. The SMART tool can be used to automate
this process. Figure 90 shows the main SMART tool window with the
Resources menu displayed.

If you select Convert Graphical Resources from the Resources pull-down
menu shown in Figure 90, then the Graphical Resources dialog will be
displayed, as shown in Figure 91 on page 87.

Figure 90. Selecting Convert Graphical Resources in SMART

For Howdy, the only graphical resource we need to convert is the icon,
HOWDY.ICO. Since you have already copied the files to a new directory and
will be migrating the copied files, you should let SMART overwrite the old
Win32 icon with the new OS/2 format icon. You can either type the name of
the icon with the full directory path into the edit box, or press the Select
button to interactively select the file to be converted.

86 Open32 for OS/2 Warp

Figure 91. Selecting Files to Convert

After you have filled in the source and target files as shown in Figure 91,
you can press the Process button and SMART will convert the icon.

SMART will capture the output of the conversion process and will create a
report like the one shown in Figure 92.

SMART Windows to OS/2 Graphical Resource File Conversion Version 1.11

Copyright (c) 1994, 1995 One Up Corporation

I1101 Converting Windows icon <G:\SMART\SMTCVT.XXX> to OS/2 icon
Converted file saved as <F:\OPEN32\HOWDY\BASE\MIGRATE\HOWDY.ICO>

Files Processed: 1
Files Converted: 1
Warnings: 0 Errors: 0

Figure 92. Results of the Icon Conversion

3.1.6 Recompiling the Resource Compiler file
Now that you have converted the Resource Compiler file and the graphical
resources, you can recompile them for OS/2. Enter:

rc /r howdy.rc

at the command line and the Resource Compiler will process the file and
produce a compiled binary named HOWDY.RES. The /r option tells the
Resource Compiler to create the binary RES file instead of binding the

Chapter 3. Howdy, World! 87

resources directly to an executable file. The results of the command are
shown in Figure 93 on page 88.

[F:\OPEN32\HOWDY\BASE\MIGRATE]rc /r howdy.rc
Operating System/2 Resource Compiler
Version 3.01.002 Mar 12 1996
(C) Copyright IBM Corporation 1988-1996
(C) Copyright Microsoft Corp. 1985-1996
All rights reserved.

Creating binary resource file howdy.RES
RC: RCPP -E -D RC_INVOKED -W4 -f howdy.rc -ef H:\IBMCPP\BIN\RCPP.ERR -I H:\IBMC
PP\INCLUDE -I H:\IBMCPP\INCLUDE\OS2 -I H:\IBMCPP\INC -I H:\IBMCPP\INCLUDE\SOM -I
H:\TOOLKIT\BETA\H -I H:\TOOLKIT\SOM\INCLUDE -I H:\TOOLKIT\H -I H:\TOOLKIT\INC -
I F:\TOOLKIT\BETA\H -I F:\TOOLKIT\SOM\INCLUDE -I F:\TOOLKIT\H -I . -I F:\TOOLKIT
\INC

howdy.rc.

[F:\OPEN32\HOWDY\BASE\MIGRATE]

Figure 93. Results of Resource Compiler

3.1.7 Compiling MAIN.C
You will recall that all Win32 applications have as their application
entrypoint a WinMain() function. OS/2 applications do not have a WinMain()
function; their entrypoint is the standard C/C++ function main(). For this
reason, Developer API Extensions applications must compile an extra file
which contains a main() function to call the Win32 WinMain() function. IBM
Developer's Toolkit for OS/2 Warp ships with MAIN.C, which contains the
needed main() function to call your Win32 application's WinMain(). You
need to copy the file from its initial location,
\TOOLKIT\SAMPLES\DAPIE\WINMAIN\MAIN.C, to the directory where you
are migrating your application. A copy of MAIN.C from the toolkit is shown
in Figure 94 on page 89.

88 Open32 for OS/2 Warp

/**
* Copyright: *
* Licensed Materials - Property of IBM *
* (C) Copyright IBM Corp. 1995 *
* All Rights Reserved *

* File: main.c *

* Description: *
* Sample "main" wrapper for applications/executables. *

#include <os2win.h>

int main(int argc, char *argv[], char *envp[])
{

/* Call WinCallWinMain to start the application.
*/
return WinCallWinMain(argc, argv, &WinMain, SW_SHOWNORMAL);

}

Figure 94. MAIN.C from the OS/2 Warp Toolkit

Once you have a copy of MAIN.C, you must compile it. Both these steps are
shown in Figure 95.

[F:\OPEN32\HOWDY\BASE\MIGRATE]copy h:\toolkit\samples\dap ie\winmain\main.c
1 file(s) copied.

[F:\OPEN32\HOWDY\BASE\MIGRATE]icc /c /Ss main.c
IBM VisualAge C ++ for OS/2, Version 3
(C) Copyright IBM Corp. 1991, 1995.
- Licensed Materials - Program Property of IBM - All Rights Reserved.

[F:\OPEN32\HOWDY\BASE\MIGRATE]

Figure 95. Copy and Compile MAIN.C

3.1.8 Creating a New DEF File
A link definitions file is necessary to link any OS/2 application, so a new DEF
file must be written for the link step in developing or migrating Developer
API Extensions applications. The most important lines tell the linker the title
of the application and the stacksize of the executable.

Chapter 3. Howdy, World! 89

The DEF file needed to compile HOWDY is shown in Figure 96 on page 90.

NAME HOWDY WINDOWAPI
DESCRIPTION 'Howdy, World! Sample Application (C) IBM, 1996'
STACKSIZE 65536

Figure 96. HOWDY.DEF

Open32 applications require relatively large stacks because of the way such
applications work under OS/2. The Developer API Extensions application
calls OS/2 functions which correspond to Win32 functions, and they in turn
call other OS/2 functions to perform the necessary actions. This quickly
creates very large function call trees, which must be held on the stack. As
a result, Developer API Extensions applications require large stacks. The
recommended minimum is 65536 bytes.

For more information on the DEF file format, see the IBM Developer's
Toolkit for OS/2 Warp.

3.1.9 Linking the Application and Binding the Resources
The final step is to link the compiled source code into an executable file and
bind the resources to it. At the command line, link the files with:

ilink howdy.obj main.obj pmwinx.lib howdy.def

IBM's new linker, ILINK, automatically categorizes files based on their
extensions, so you do not need to specify which files are the object files,
which are libraries, and so on.

The extra library linked with the application, PMWINX.LIB, contains the
necessary code to link any Open32 application to the run-time Developer
API Extensions DLLs in OS/2. You must manually specify it for any Open32
application.

After the link step, bind the resources to the executable with the Resource
Compiler. At the command line, type:

rc howdy.res howdy.exe

The Resource Compiler will add the application's resources to the
executable file.

The results of these last two steps are shown in Figure 97 on page 91.

90 Open32 for OS/2 Warp

[F:\OPEN32\HOWDY\MIGRATE]ilink howdy.obj main.obj pmwinx. lib howdy.def

IBM(R) Linker for OS/2(R), Version 01.00.05
(C) Copyright IBM Corporation 1988, 1995.
(C) Copyright Microsoft Corp. 1988, 1989.
- Licensed Material - Program-Property of IBM - All Rights Reserved.

[F:\OPEN32\HOWDY\MIGRATE]rc howdy.res howdy.exe
Operating System/2 Resource Compiler
Version 3.01.002 Mar 12 1996
(C) Copyright IBM Corporation 1988-1996
(C) Copyright Microsoft Corp. 1985-1996
All rights reserved.

Reading binary resource file howdy.res

.
Writing resources to OS/2 v2.0 Linear .EXE file
Writing 1 DEMAND resource object(s)
Writing: 876 bytes in 1 page(s)

101.1 (874 bytes)

[F:\OPEN32\HOWDY\BASE\MIGRATE]

Figure 97. Link and Bind Application

3.1.10 Testing the Application
Now, you should have a newly compiled HOWDY application for OS/2. When
you run the program, the main window should appear, as shown in
Figure 98 on page 92.

Chapter 3. Howdy, World! 91

Figure 98. Your New OS/2 Application

3.2 Enhancing Your Application

The Howdy application is fine as a stand-alone programming example, but it
does not demonstrate any real-world programming situation. In this section,
you will add the following standard Win32 resources to the application:

• Menu (See Section 3.2.1, “Adding a Menu”)

• Accelerator (See Section 3.2.2, “Adding Accelerators” on page 95)

• Dialog box (See Section 3.2.3, “Adding Dialog Boxes” on page 96)

3.2.1 Adding a Menu
Almost every Win32 application has a menu bar above its client window, so
it is a logical choice as the first resource to add to the Howdy application.

The Win32 source files for the menu-enabled Howdy are on the CD in the
directory HOWDY MENU WIN32. The common files, shared between both
Win32 and OS/2 versions of Howdy, are in HOWDY MENU. The OS/2,

92 Open32 for OS/2 Warp

specific source files are in HOWDY MENU OS2. This is the structure used
for the sample applications throughout the remainder of this redbook.

3.2.1.1 Copying the Source Code
We recommend copying the source code for the Howdy application to your
hard drive in the directory OPEN32 HOWDY MENU. You can then copy the
Win32 source files to a MIGRATE directory. Both of these steps are shown
in Figure 99.

[D:\OPEN32\HOWDY]md menu

[D:\OPEN32\HOWDY]cd menu

[D:\OPEN32\HOWDY\MENU]copy f:\howdy\menu*
F:\howdy\menu\HOWDY.C
F:\howdy\menu\HOWDY.H

2 file(s) copied.

[D:\OPEN32\HOWDY\MENU]md migrate

[D:\OPEN32\HOWDY\MENU]cd migrate

[D:\OPEN32\HOWDY\MENU\MIGRATE]copy f:\howdy\menu\win32*
F:\howdy\menu\win32\HOWDY.EXE
F:\howdy\menu\win32\HOWDY.ICO
F:\howdy\menu\win32\HOWDY.MAK
F:\howdy\menu\win32\HOWDY.OBJ
F:\howdy\menu\win32\HOWDY.RC
F:\howdy\menu\win32\MAKEFILE

6 file(s) copied.

[D:\OPEN32\HOWDY\MENU\MIGRATE]

Figure 99. Copying the Howdy Menu Source Files

The HOWDY.C and HOWDY.H source files are shared between both the OS/2
and the Win32 version of Howdy. This is possible because the source code
uses a precompiler #ifdef statement to let the compiler decide whether to
include <windows.h> or <os2win.h>. This statement is shown in Figure 100 on
page 94. This technique is used for most applications in this redbook.

Chapter 3. Howdy, World! 93

#ifdef OS2 // Compiling for OS/2
#include <os2win.h>
#else // Compiling for Windows
#include <windows.h>
#endif

Figure 100. HOWDY.C: Precompiler Statement

The process of migrating an application with a menu bar is essentially
identical to the process used in 3.1, “Overview of the Migration Process” on
page 79. The only difference is when you use SMART to translate the
resources, SMART's output will be displayed as shown in Figure 101.

SMART Windows to OS/2 Resource Translation Version 1.00

Copyright (c) 1993, 1994 One Up Corporation

Command line:
g:\SMART\SMARTRC.EXE -G 850,1004 -R -X *.??X -E
F:\OPEN32\HOWDY\MENU\MIGRATE\HOWDY.ERR -S
F:\OPEN32\HOWDY\MENU\MIGRATE\HOWDY.SUM
F:\OPEN32\HOWDY\MENU\MIGRATE\HOWDY.RC

I1003 Converting from code page <1004> to code page <850>

W2013 Macro redefinition : <IDR_MENU1>
W2013 Macro redefinition : <MM_FILEEXIT>
F:\OPEN32\HOWDY\MENU\MIGRATE\HOWDY.RC(57:11) : W2006 Submenu item <"&File">
assigned identifier of <0xF200>

Figure 101. SMART Output when Translating a Menu

The messages about:

Macro redefinition

simply mean that SMART is translating menu item definitions from Win32
format to OS/2 format. The last message, in which <"&File">is assigned a
hexadecimal identifier, tells you that SMART is automatically assigning the
submenu a required number. The identifier is required by the Resource
Compiler, and is available to native OS/2 applications. Because you are
migrating a Win32 application using Developer API Extensions, the identifier
is invisible to your application and can be disregarded.

Now that the resources are ready, you can finish migrating the application
using the same steps as in the previous section. This will create an
application as shown in Figure 102 on page 95.

94 Open32 for OS/2 Warp

Note

The C source code for Howdy with a menu differs from the base C
source used in 3.1, “Overview of the Migration Process” on page 79.
The menu application requires extra code to respond to the menu items.

Figure 102. Howdy with a Menu

If you have problems, refer to 3.1, “Overview of the Migration Process” on
page 79 and Appendix A, “Common Problems and Easy Solutions” on
page 255 for solutions.

3.2.2 Adding Accelerators
Once you have a menu, it is logical that you would want to add keyboard
accelerators for some of the functions. SMART will translate the resource
file definitions for you automatically.

After SMART finishes processing, you will get a message like the one shown
in Figure 103 on page 96.

Chapter 3. Howdy, World! 95

SMART Windows to OS/2 Resource Translation Version 1.00

Copyright (c) 1993, 1994 One Up Corporation

Command line:
g:\SMART\SMARTRC.EXE -G 850,1004 -R -X *.??X -E F:\OPEN32\HOWDY\ACCEL\MIGRATE\HOWDY.ERR
-S F:\OPEN32\HOWDY\ACCEL\MIGRATE\HOWDY.SUM F:\OPEN32\HOWDY\ACCEL\MIGRATE\HOWDY.RC

I1003 Converting from code page <1004> to code page <850>

F:\OPEN32\HOWDY\ACCEL\MIGRATE\HOWDY.RC(4:1) : W2017 Include file name <windows.h> changed to
<os2.h>
W2013 Macro redefinition : <IDR_MENU1>
W2013 Macro redefinition : <IDR_ACCELERATOR1>
W2013 Macro redefinition : <MM_FILEEXIT>
F:\OPEN32\HOWDY\ACCEL\MIGRATE\HOWDY.RC(66:11) : W2006 Submenu item <"&File"> assigned
identifier of <0xF200>

Figure 103. SMART Results with Accelerators

Note, the statement:

#include <windows.h>

was not changed to

#include <os2win.h>

This is due to the nature of Developer API Extensions. The resources you
bind to your executable file are in native OS/2 format, so the include file for
resources must be the standard OS/2 include file. Note, the end result is
your accelerator table is loaded and used as a native OS/2 accelerator
table, although the functions you call with it appear to be Win32 functions.

Note

If you ever find that your accelerator table does not work properly, check
your resource file to see if <os2win.h> has been included by mistake.
The Resource Compiler will not produce any build-time errors if this
happens. However, due to differences in virtual key definitions between
Win32 and OS/2, the keys will not work as they should.

3.2.3 Adding Dialog Boxes
Dialog boxes are also very common in Win32 programs. Again, SMART will
do most of the work for you in converting the dialog box to OS/2. The output
of the SMART conversion is shown in Figure 104 on page 97.

96 Open32 for OS/2 Warp

SMART Windows to OS/2 Resource Translation Version 1.00

Copyright (c) 1993, 1994 One Up Corporation

Command line:
g:\SMART\SMARTRC.EXE -G 850,1004 -R -X *.??X -E F:\OPEN32\HOWDY\DIALOG\MIGRATE\HOWDY.ERR
-S F:\OPEN32\HOWDY\DIALOG\MIGRATE\HOWDY.SUM F:\OPEN32\HOWDY\DIALOG\MIGRATE\HOWDY.RC

I1003 Converting from code page <1004> to code page <850>

F:\OPEN32\HOWDY\DIALOG\MIGRATE\HOWDY.RC(4:1) : W2017 Include file name <windows.h>
changed to <os2.h>
W2013 Macro redefinition : <IDR_MENU1>
W2013 Macro redefinition : <IDR_ACCELERATOR1>
W2013 Macro redefinition : <IDD_SETTINGS>
W2013 Macro redefinition : <IDC_SHOWICON>
W2013 Macro redefinition : <IDC_COLORBLACK>
W2013 Macro redefinition : <IDC_COLORRED>
W2013 Macro redefinition : <IDC_COLORGREEN>
W2013 Macro redefinition : <IDC_CHECKMESSAGE>
W2013 Macro redefinition : <IDC_MESSAGE>
W2013 Macro redefinition : <MM_FILEEXIT>
W2013 Macro redefinition : <MM_DIALOGSETTINGS>
W2013 Macro redefinition : <IDC_STATIC -1>
F:\OPEN32\HOWDY\DIALOG\MIGRATE\HOWDY.RC(66:11) : W2006 Submenu item <"&File"> assigned
identifier of <0xF200>
F:\OPEN32\HOWDY\DIALOG\MIGRATE\HOWDY.RC(70:11) : W2006 Submenu item <"&Dialogs"> assigned
identifier of <0xF201>
F:\OPEN32\HOWDY\DIALOG\MIGRATE\HOWDY.RC(95:23) : E3033 <DS_CENTER> is not a recognized
keyword
F:\OPEN32\HOWDY\DIALOG\MIGRATE\HOWDY.RC(97:6) : W2001 Font <MS Sans Serif> mapped
to <Helv>
F:\OPEN32\HOWDY\DIALOG\MIGRATE\HOWDY.RC(108:26) : W2016 Control identifier <IDOK>
changed to <DID_OK>
F:\OPEN32\HOWDY\DIALOG\MIGRATE\HOWDY.RC(109:30) : W2016 Control identifier <IDCANCEL>
changed to <DID_CANCEL>

Figure 104. Results of Dialog Box Migration

You will notice in Figure 104 that there was one error:

HOWDY.RC(95:23) : E3033 <DS_CENTER> is not a recognized keyword

The DS_CENTER keyword instructs Windows to put the dialog box in the center
of the screen. There is not an equivalent keyword in OS/2, but you still have
some control over dialog box location. You should finish compiling Howdy
to make sure it is at least functional.

You will probably encounter one small error when you try to recompile
HOWDY.C under OS/2, as shown in Figure 105 on page 98.

Chapter 3. Howdy, World! 97

howdy.c(42:4) : error EDC3013: Identifier "strcpy" is undefined.
NMAKE : fatal error U1077: 'G:\OS2\CMD.EXE' : return code '12'
Stop.

Figure 105. Howdy Compiler Error

Although strcpy() is a standard C function, the VisualAge C++ compiler
needs its definition. The function is defined in the header file string.h, so
you need to add:

#include <string.h>

to HOWDY.C. If you are not sure what file a function is defined in, you can look
in the “C Library Reference” in the “VisualAge C++ Information” folder.

With strcpy() defined correctly, the Howdy application will build normally.

Now you can run the application and test the dialog box. Selecting Settings
from the menu will activate the dialog, shown in Figure 106. Pressing Ctrl-S
in the main window should activate the dialog box, but depending on your
version of SMART, it may not. Some versions are known to have problems
translating accelerator tables. If Ctrl-S does not work for you, you need to
manually edit HOWDY.RC and change the accelerator definition by changing
the letter S to a lowercase s and removing the SHIFT keyword. For more
information about accelerator translation problems, see 3.2.4, “Resource
Differences and SMART Limitations” on page 100.

Figure 106. Message Settings Dialog Box

98 Open32 for OS/2 Warp

You can modify the text and color of Howdy's message in the dialog box.
You can also disable the message completely by removing the checkmark
from the Message checkbox.

Now that you know that Howdy works properly, you can modify it so the
dialog box appears in a more useful location. You will find it most helpful to
align dialog box locations with respect to your application window rather
than to the screen. Screen size changes from system to system and can
vary greatly, but your application window will usually be about the same
size. By aligning the dialog to your window, you can also be sure that the
dialog appears near or over your application window.

To make the dialog box position relative to your application window, delete
the FS_SCREENALIGN keyword from the dialog attributes list in HOWDY.RC.
This will cause the dialog box to appear in the lower left corner of your
window. You can move it up and to the right by adjusting the first two
numbers in the DIALOG statement. Figure 107 shows these modifications to
the dialog box definition.

DLGTEMPLATE IDD_SETTINGS DISCARDABLE
BEGIN
DIALOG "Message Settings", IDD_SETTINGS, 90, 75, 172, 111,

FS_DLGBORDER,
FCF_TITLEBAR | FCF_SYSMENU | FCF_NOMOVEWITHOWNER

BEGIN
CONTROL "Message:",IDC_CHECKMESSAGE, 9, 92, 59, 10, WC_BUTTON,

BS_AUTOCHECKBOX | WS_TABSTOP | BS_PUSHBUTTON | WS_VISIBLE
ENTRYFIELD "", IDC_MESSAGE, 72, 91, 89, 11, ES_MARGIN
CONTROL "Black", IDC_COLORBLACK, 27, 65, 43, 10, WC_BUTTON,

BS_AUTORADIOBUTTON | BS_PUSHBUTTON | WS_VISIBLE
CONTROL "Red", IDC_COLORRED, 27, 51, 37, 10, WC_BUTTON,

BS_AUTORADIOBUTTON | BS_PUSHBUTTON | WS_VISIBLE
CONTROL "Green", IDC_COLORGREEN, 27, 38, 44, 10, WC_BUTTON,

BS_AUTORADIOBUTTON | BS_PUSHBUTTON | WS_VISIBLE
DEFPUSHBUTTON "OK", DID_OK, 22, 7, 63, 14
PUSHBUTTON "Cancel", DID_CANCEL, 92, 7, 63, 14
GROUPBOX "Select Color",IDC_COLORGROUP,17, 31, 70, 55, WS_TABSTOP | DT_MNEMONIC
ICON ID_HOWDYICON, IDC_SHOWICON, 117, 56, 20, 16
LTEXT "Howdy!", IDC_STATIC, 115, 40, 32, 8, NOT WS_GROUP |

SS_TEXT | DT_WORDBREAK | DT_MNEMONIC
GROUPBOX "", IDC_STATIC, 105, 31, 49, 55, DT_MNEMONIC

END
END

Figure 107. HOWDY.RC with Modifications

Note that remigrating the Win32 Resource Compiler file with SMART will
destroy the changes you have made so that the OS/2 version of Howdy
works nicely. This is especially important when you update your Win32
application and need to remigrate the new version to OS/2.

Chapter 3. Howdy, World! 99

3.2.4 Resource Differences and SMART Limitations
You have already seen some of the situations that SMART cannot fully
resolve. There are many problems in converting Win32 applications to OS/2
applications which Developer API Extensions and SMART cannot solve
alone. You will need to take a very active role in migrating your application
to OS/2.

There are a few tricks and pitfalls you should know about before continuing
to the next chapter. First, there is an important difference between the way
Windows and OS/2 use accelerator tables. Under Windows, the keystroke
Ctrl-s is the same regardless of the state of CapsLock. Under OS/2, the
keystroke Ctrl-s is different from Ctrl-S (note the difference in case), and
both are different from Ctrl-Shift-S or Ctrl-Shift-s. It is therefore very
important that you modify your accelerator tables after SMART conversion
by duplicating accelerators that use the character keys.

For example, say you originally had the following accelerator in your
Windows application:

"S", MM_DIALOGSETTINGS, VIRTKEY, CONTROL, NOINVERT

SMART would translate the accelerator to OS/2 format for you automatically:

"S", MM_DIALOGSETTINGS, VIRTUALKEY, SHIFT, CONTROL

However, this is not the same accelerator key to the end user. The user
must press Ctrl-Shift-s with CapsLock off to activate the accelerator. You
should change the line to:

"s", MM_DIALOGSETTINGS, VIRTUALKEY, CONTROL

This is a start, but now if the user has CapsLock on, they cannot use the
accelerator. To fix this, you need to make a second accelerator for a capital
‘S’. Both are shown in Figure 108.

"s", MM_DIALOGSETTINGS, VIRTUALKEY, CONTROL
"S", MM_DIALOGSETTINGS, VIRTUALKEY, CONTROL

Figure 108. A Fully Functional OS/2 Accelerator Definition

You may have also noticed that the Message Settings dialog box changed
slightly when it was converted to OS/2. Whereas the Win32 dialog had both
the Howdy icon and the “Howdy!” text centered in the group frame, the OS/2
version was slightly different. This is due to differences in mapping
coordinate systems between Win32 and OS/2, as well as differences in icon

100 Open32 for OS/2 Warp

size and text width. To realign the controls for OS/2, you can use the Dialog
Editor included in the OS/2 Warp Toolkit.

Be careful when using the Dialog Editor. It will modify the compiled
HOWDY.RES file, but will leave the source file HOWDY.RC unchanged. The
Dialog Editor will create a separate HOWDY.DLG file which contains the
modified dialog box. You can change HOWDY.RC to include HOWDY.DLG,
but remember that if at some future time you again migrate the resource file
from Win32 these changes will be lost and you will need to reuse the Dialog
Editor and include the HOWDY.DLG in the newly migrated resource file.

While there are these small issues in migrating your application to OS/2, it
is still remarkably easy to do. After these few examples, you should be
fairly competent in migrating the most important parts of your application.
The following chapters will deal with more complex issues which you may
encounter.

Chapter 3. Howdy, World! 101

102 Open32 for OS/2 Warp

Chapter 4. MDI Sample Program

This chapter describes another common source application sample which in
comparison with the sample described in Chapter 3, “Howdy, World!” on
page 79, has more features and functions. This sample has many of the
functions commonly found in Windows' applications. The main goal of this
chapter is to help you become familiar with Developer API Extensions
functions and to expand on the migration steps and techniques presented in
Chapter 3, “Howdy, World!” on page 79.

For OS/2 application developers who may not be familiar with the concepts
of developing programs using the Windows Multiple Document Interface
(MDI), this chapter will illustrate how this can be coded. Thus, Open32
provides OS/2 application developers with additional functions from which to
build applications for the OS/2 environment.

4.1 Application's Overview

The sample program described in this chapter is based on Windows
Multiple Document Interface (MDI). It uses MDI child windows to present
four different types of information:

• Bitmap

• Graphics

• Screen capture image

• Text

Figure 109 on page 104 shows the MDI sample program with four MDI child
windows open and filled with different types of information.

 Copyright IBM Corp. 1996 103

Figure 109. MDI Sample Program Overview

The MDI sample program architecture is shown in Figure 110 on page 105.

The MDI sample program starts by creating a main window, called the MDI
frame window, which in turn creates a child window, called the MDI client
window. Later the MDI client window creates its own child windows called
MDI child windows. It is these MDI child windows which contain the
information that the application presents.

There is a clean separation of responsibility among these different MDI
windows in this architecture. The MDI frame window takes care of the
user's interaction. The MDI client window is responsible for the creation
and the management of the MDI child windows. The MDI child windows is
responsible for the presentation of information in its drawing area.

104 Open32 for OS/2 Warp

Figure 110. MDI Sample Program Architecture

The user interacts with the application through menus. When a menu
command is received by the application, depending on the type of the
command, the MDI frame window forwards it either to the MDI client window
or to the currently active MDI child window for further processing. The
Windows Multiple Document Interface provides all the means necessary for
all these components to work together.

Note that OS/2 does not have built-in support for MDI. Of course
programmers can code it themselves but it will not be trivial job, and it is
preferable to have it as native operating system support. The Open32
support now offers this type of function to you at the operating system level
for OS/2 Warp.

4.2 User's Interface

When the MDI sample program is executed, only the File and Help pull-down
menus are accessible, as shown in Figure 111 on page 106. The three
things you can do at this point are to create a new MDI child window (New
option of File menu bar pull-down), to display the About dialog box (About
option of Help menu bar pull-down) or to leave the application (Exit option of
File menu bar pull-down).

Chapter 4. MDI Sample Program 105

Figure 111. MDI Sample Program Main Menu

The Close option of the File menu bar pull-down is disabled, since no MDI
child window has yet been open. After the creation of the first MDI child
window, the Close option of the File menu bar pull-down is enabled allowing
you to close the currently active MDI child window. Also two more MDI
child window specific pull-down menus, Draw and Window, become
available as shown in Figure 112 on page 107.

After you have opened a MDI child window, you can then fill the MDI child
windows from the Draw pull-down menu by selecting Bitmap, Graphics,
Screen Capture or Text option. From the Window pull-down menu, as
shown in Figure 113 on page 107, you can reorganize the MDI child
windows within the MDI client window using the Cascade or Tile option.
Also you can arrange the icons of the MDI child windows using the Arrange
Icons option. Beside these reorganization options, the Window pull-down
menu displays the list of all the MDI child windows and gives you a rapid
way to select one of them or to close all of them using the Close All option.
You can also directly manipulate the MDI child windows through their own
maximize and minimize menu system.

106 Open32 for OS/2 Warp

Figure 112. Draw Pull-Down Menu

Figure 113. Window Pull-Down Menu

Chapter 4. MDI Sample Program 107

4.3 Summary of Win32 API Functions Used

The Win32 API functions used in the MDI sample program fall into the
following categories:

• Window Management

• Graphics Device Interface

- Graphics drawing

- Text drawing

- Bitmap drawing

- Screen Capture

• Common Dialog Box

The following list groups the Win32 API functions used in the MDI sample
program by the type of the object they manipulate:

• Bitmaps

- BitBlt()

- CreateCompatibleBitmap()

- PatBlt()

• Device Contexts

- CreateCompatibleDC()

- CreateDC()

- DeleteDC()

- GetDC()

- ReleaseDC()

• Drawing-Attribute and Tool

- CreateSolidBrush()

- DeleteObject()

- GetObject()

- GetStockObject()

- SelectObject()

- SetBkMode()

• Ellipse

- Ellipse()

108 Open32 for OS/2 Warp

• Fonts

- ChooseFont() (Common Dialog Box Library)

- CreateFontIndirect()

• Menu

- DrawMenuBar()

- GetSubMenu()

• Message and Message Queues

- DispatchMessage()

- GetMessage()

- PostQuitMessage()

- SendMessage()

- TranslateMessage()

• Multiple Document Interface

- DefFrameProc()

- DefMDIChildProc()

• Resource-Management

- LoadAccelerator()

- LoadBitmap()

- LoadMenu()

• System

- GetSystemMetrics()

• Text

- SetTextColor()

- TextOut()

• Class

- RegisterClass()

• Windows

- BeginPaint()

- CreateWindow()

- EndPaint()

- GetWindowLong()

Chapter 4. MDI Sample Program 109

- InvalidateRect()

- SetWindowLong()

- ShowWindow()

- UpdateWindow()

4.4 Source Files

Table 3 lists all the source files used by the MDI sample program. You will
find these files on the CD-ROM supplied with this book in the MDI directory
and in its two subdirectories, OS2 and WIN32. The OS2 and WIN32
subdirectories contain respectively platform specific files for OS/2 and
Windows while the MDI directory contains the files common to both OS/2
and Windows.

Table 3. Source Files

LOCATION NAME DESCRIPTION

MDI MDI.H Common source header file

MDI MDI.C Common source code file

MDI OS2TILE.BMP Common bitmap resource file

MDI OS2 MAIN.C OS/2 specific source file

MDI OS2 and MDI WIN32 MDI.RC OS/2 and Windows specific resource file

MDI OS2 MDI.MAK OS/2 specific makefile

MDI WIN32 MAKEFILE Windows specific makefile

MDI OS2 and MDI WIN32 MDI.DEF OS/2 and Windows specific module
definition file

MDI OS2 and MDI WIN32 MDI.ICO OS/2 and Windows specific icon resource
file

4.5 Coding

The coding takes place on Windows 95 or NT using Microsoft Visual C++
Version 4.0. This section gives some design and programming details of the
MDI sample program. It is intended for application developers, in particular
OS/2 application developers, who are not familiar with Microsoft MDI
programming interface. Readers who have already developed applications
using Microsoft MDI programming interface may wish to skip this section by
going to 4.6, “Migration” on page 129.

In 4.5.1, “Resources” on page 111 we will look at the resources used by the
application. In 4.5.2, “WinMain()” on page 112 to 4.5.4, “MDIWndProc()” on

110 Open32 for OS/2 Warp

page 118, we will talk about the main functions that make up the program
with focus on what is unique to MDI programming.

4.5.1 Resources
The resources used by the MDI sample program are simple and are written
in a straight forward manner using the Microsoft Developer's Studio.
Figure 114 shows the resource definitions.

You will notice that there are two menus in the resource file. One,
IDR_MENU, is simpler with only two pull-down menus, File and Help. It is
used as the main MDI application menu. The other, IDR_MENU_CHILD, has
two more pull-down menus, Draw and Window. It is used for the MDI child
windows. How the MDI sample program switches between these two menus
will be explained in 4.5.4, “MDIWndProc()” on page 118.

// Windows Resources
// Icon
IDI_ICON ICON DISCARDABLE "mdi.ico"
IDI_DAPIE ICON DISCARDABLE "dapie.ico"

// Bitmap
IDB_DAPIE BITMAP DISCARDABLE "dapie.bmp"
// Main application menu
IDR_MENU MENU DISCARDABLE
BEGIN

POPUP "&File"
BEGIN

MENUITEM "&New", IDM_NEW
MENUITEM "&Close", IDM_CLOSE, GRAYED
MENUITEM SEPARATOR
MENUITEM "&Exit", IDM_EXIT

END
POPUP "&Help"
BEGIN

MENUITEM "&About...", IDM_ABOUT
END

END

Figure 114 (Part 1 of 2). MDI Sample Program's Resources

Chapter 4. MDI Sample Program 111

// MDI child window menu
IDR_MENU_CHILD MENU DISCARDABLE
BEGIN

POPUP "&File"
BEGIN

MENUITEM "&New", IDM_NEW
MENUITEM "&Close", IDM_CLOSE
MENUITEM SEPARATOR
MENUITEM "&Exit", IDM_EXIT

END
POPUP "&Draw"
BEGIN

MENUITEM "&Bitmap", IDM_BITMAP
MENUITEM "&Graphics", IDM_GRAPHICS
MENUITEM "&Screen Capture", IDM_SCREEN
MENUITEM "&Text", IDM_TEXT

END
POPUP "&Window"
BEGIN

MENUITEM "&Cascade", IDM_CASCADE
MENUITEM "&Tile", IDM_TILE
MENUITEM "Arrange &Icons", IDM_ARRANGE
MENUITEM "Close &All", IDM_CLOSEALL

END
POPUP "&Help"
BEGIN

MENUITEM "&About...", IDM_ABOUT
END

END

// About dialog
IDD_ABOUT DIALOG DISCARDABLE 0, 0, 186, 95
STYLE DS_MODALFRAME | WS_CAPTION | WS_SYSMENU
CAPTION "About DAPIE MDI Sample"
FONT 8, "MS Sans Serif"
BEGIN

DEFPUSHBUTTON "OK",IDOK,67,74,50,14
ICON IDI_ICON,IDC_STATIC,163,72,18,20
CTEXT "DAPIE MDI Sample",IDC_STATIC,49,16,88,8
ICON IDI_DAPIE,IDC_STATIC,7,68,18,20
CTEXT "(C) Copyright IBM Corp. 1996",IDC_STATIC,45,36,96,8
CTEXT "Developed by IBM ITSC Austin",IDC_STATIC,41,56,103,8

END

Figure 114 (Part 2 of 2). MDI Sample Program's Resources

4.5.2 WinMain()
The WinMain() function is the entry point of Windows application programs.
It usually does routine tasks such as global variables initialization, window
classes registering, main application window creation and message
dispatching. Figure 115 on page 113 lists the WinMain() section of the MDI
sample program. In addition to the routine Windows application processing,
the WinMain() function of the MDI sample program registers an extra
window class for MDI child windows called MDIChild. The window

112 Open32 for OS/2 Warp

procedure of the MDIChild window class, MDIWndProc(), will be discussed in
4.5.4, “MDIWndProc()” on page 118.

The message loop processing in the MDI sample program differs a little
from a normal message loop processing. This is because each MDI child
windows has its own system menu with different accelerator keys from the
main window. The WinMain() function must translate the accelerator keys
by calling TranslateMDISysAccel() function. Notice the two different window
handles, hwndFrame and hwndClient, respectively passed to
TranslateAccelerator() and TranslateMDISysAccel(). hwndFrame is the MDI
frame window handle and hwndClient the MDI Client window handle.
TranslateAccelerator() translates the accelerator keys for hwndFrame while
TranslateMDISysAccel() translates the accelerator keys for hwndClient.

//***
//* WinMain
//***
int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR lpCmdLine, int nCmdShow)
{

WNDCLASS wc;
HWND hwndFrame, hwndClient;
MSG msg; // message structure
HANDLE hAccelTable; // accelarator table handle.

hInst = hInstance;

// Register the main window class
wc.style = 0;
wc.lpfnWndProc = MainWndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hInstance = hInstance;
wc.hIcon = LoadIcon(hInstance, MAKEINTRESOURCE(IDI_ICON));
wc.hCursor = LoadCursor(NULL, IDC_ARROW);
wc.hbrBackground = (HBRUSH)(COLOR_APPWORKSPACE);
wc.lpszMenuName = MAKEINTRESOURCE(IDR_MENU);
wc.lpszClassName = szAppName;
if(!RegisterClass(&wc))

return FALSE;

Figure 115 (Part 1 of 2). MDI Sample Program WinMain() Function

Chapter 4. MDI Sample Program 113

// Register the MDI child window class
wc.style = 0;
wc.lpfnWndProc = MDIWndProc;
wc.cbWndExtra = 8;
wc.hIcon = LoadIcon(hInstance, MAKEINTRESOURCE(IDI_ICON));
wc.lpszMenuName = NULL;
wc.lpszClassName = szMDIChild;
if(!RegisterClass(&wc))

return FALSE;

// Create the main window - the MDI Frame window
hwndFrame = CreateWindow(szAppName,

"DAPIE MDI Sample",
WS_OVERLAPPEDWINDOW | WS_CLIPCHILDREN,
CW_USEDEFAULT, CW_USEDEFAULT,
CW_USEDEFAULT, CW_USEDEFAULT,
NULL,
NULL,
hInstance,
NULL);

// Get the MDI client window handle
hwndClient = GetWindow(hwndFrame, GW_CHILD);

// Show the main window
ShowWindow(hwndFrame, nCmdShow);
UpdateWindow(hwndFrame);

// Load accelarator table.
hAccelTable = LoadAccelerators(hInstance, MAKEINTRESOURCE(IDR_ACCEL));

// Dispatch the messages.
while (GetMessage(&msg, NULL, 0, 0))
{

if(!TranslateAccelerator(hwndFrame, hAccelTable, &msg) &&
!TranslateMDISysAccel(hwndClient, &msg))

{
TranslateMessage(&msg);
DispatchMessage(&msg);

}
}

return (msg.wParam);
}

Figure 115 (Part 2 of 2). MDI Sample Program WinMain() Function

4.5.3 MainWndProc()
MainWndProc() is the window procedure of the MDI frame window. Its main
responsibilities are to initialize the MDI client window and to process the
menu commands. Figure 117 on page 116 lists the MainWndProc() section
of the MDI sample program.

114 Open32 for OS/2 Warp

During the processing of the WM_CREATE message, MainWndProc() calls
CreateWindow() to create the MDI client window. The window class name is
set to MDClient, which is the preregistered class for MDI client windows.
The last argument to CreateWindow() is set to a pointer to a structure of
type CLIENTCREATESTRUCT. The structure contains the initial main menu
handle and the first MDI child window's identifier.

MainWndProc() gets menu commands from the WM_COMMAND message
and treats them according to their type. The menu commands concerning
MDI windows are grouped into three types for processing as follows:

1. Actions to be applied on to a single MDI child window.

• IDM_CLOSE: Close a MDI child window

• IDM_BITMAP: Draw bitmaps in a MDI child window

• IDM_GRAPHICS: Draw graphics in a MDI child window

• IDM_SCREEN: Capture the screen image and draw it in a MDI
child window

• IDM_TEXT: Draw texts in a MDI child window

MainWndProc() sends the WM_MDIGETACTIVE message to the MDI
client window to get the currently active MDI child window's handle then
forwards the commands to the active MDI child window.

2. Actions to be applied to all the MDI child windows.

• IDM_CASCADE: Reorganize the MDI child windows on cascade

• IDM_TILE: Reorganize the MDI child windows on tiles

• IDM_ARRANGE: Reorganize the icons of the MDI child windows

• IDM_CLOSEALL: Close all the MDI child windows

These commands, except IDM_CLOSEALL, are translated into one of the
following MDI messages, WM_MDITILE, WM_MDICASCADE or
WM_MDIICONARRANGE, then sends the translated messages to the MDI
client window for processing. For the IDM_CLOSEALL command,
EnumChildWindows() function is called to pass the window handle of
each MDI child window one after the other to the CloseMDIChild()
function. This function then sends a WM_CLOSE message to each
window handle it receives.

3. Actions to be applied to the MDI client window.

It concerns the IDM_NEW command. On receipt of this command,
MainWndProc() calls NewMDIChild() function to create a new MDI child
window. Figure 116 on page 116 lists the NewMDIChild() section the
MDI sample program.

Chapter 4. MDI Sample Program 115

// Create a new MDI child window
HWND NewMDIChild(HWND hwndClient, LONG idChild)
{

CHAR szTitle[80];
HWND hwndChild;
MDICREATESTRUCT mdi;

wsprintf(szTitle, "MDI Child %d", idChild);
mdi.szClass = szMDIChild;
mdi.szTitle = szTitle;
mdi.hOwner = NULL;
mdi.x = mdi.y = mdi.cx = mdi.cy = CW_USEDEFAULT;
mdi.style = 0;
mdi.lParam = 0;
hwndChild = (HWND)SendMessage(hwndClient, WM_MDICREATE, 0, (LPARAM)&mdi);

return hwndChild;
}

Figure 116. NewMDIChild(): Create a New MDI Child Window

NewMDIChild() initializes a MDICREATESTRUCT structure and sends the
MDI client window a WM_MDICREATE message with the address of this
structure. The MDI client window then creates a new MDI child window.

Notice that all messages that MainWndProc() chooses not to process are
passed to DefFrameProc() instead of DefWindowProc(). DefFrameProc() is a
MDI specific function that forwards the unprocessed messages to the MDI
client window.

//***
//* MainWndProc
//***
LRESULT CALLBACK MainWndProc(HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{

static HWND hwndClient;
static int iMDILast = 0;

Figure 117 (Part 1 of 3). MainWndProc(): Main Window Procedure

116 Open32 for OS/2 Warp

switch (message)
{

case WM_CREATE:
{

HMENU hMenu = LoadMenu(hInst, MAKEINTRESOURCE(IDR_MENU));
CLIENTCREATESTRUCT client;
client.hWindowMenu = GetSubMenu(hMenu, 0);
client.idFirstChild = 1;
hwndClient = CreateWindow("MDIClient", NULL,

WS_CHILD | WS_CLIPCHILDREN | WS_VISIBLE,
0,0,0,0,
hwnd, NULL, hInst, (LPVOID)&client);

break;
}
case WM_COMMAND:

switch (LOWORD(wParam))
{

case IDM_NEW:
{

if (iMDICount == 0) {
HMENU hMenu = GetMenu(hwnd);
EnableMenuItem(hMenu, IDM_CLOSE, MF_ENABLED);
iMDILast = 0;

} /* endif */
iMDICount++;
iMDILast++;
NewMDIChild(hwndClient, iMDILast);
break;

}
case IDM_CLOSE:
case IDM_BITMAP:
case IDM_GRAPHICS:
case IDM_SCREEN:
case IDM_TEXT:
{

HWND hwndChild = (HWND)SendMessage(hwndClient, WM_MDIGETACTIVE, 0, 0);
if(hwndChild)

SendMessage(hwndChild, WM_COMMAND, wParam, lParam);
break;

}
case IDM_EXIT:

SendMessage(hwnd, WM_CLOSE, 0, 0);
break;

case IDM_CASCADE:
SendMessage(hwndClient, WM_MDICASCADE, 0, 0);
break;

Figure 117 (Part 2 of 3). MainWndProc(): Main Window Procedure

Chapter 4. MDI Sample Program 117

case IDM_TILE:
SendMessage(hwndClient, WM_MDITILE, 0, 0);
break;

case IDM_ARRANGE:
SendMessage(hwndClient, WM_MDIICONARRANGE, 0, 0);
break;

case IDM_CLOSEALL:
EnumChildWindows(hwndClient, CloseMDIChild, 0);
break;

case IDM_ABOUT:
DialogBox(hInst, MAKEINTRESOURCE(IDD_ABOUT), hwnd, AboutDlgProc);
break;

default:
return DefFrameProc(hwnd, hwndClient, message, wParam, lParam);

}
break;

case WM_DESTROY:
PostQuitMessage(0);
break;

default:
return DefFrameProc(hwnd, hwndClient, message, wParam, lParam);

}

return 0;
}

Figure 117 (Part 3 of 3). MainWndProc(): Main Window Procedure

4.5.4 MDIWndProc()
MDIWndProc() is the MDI child window procedure. Its main goal is to draw
the MDI child windows. Figure 119 on page 120 lists the MDIWndProc()
section of the MDI sample program.

On receipt of the WM_CREATE message, MDIWndProc() calls InitMDIChild()
function to initialize a new MDI child window. Figure 118 on page 119 lists
the InitMDIChild() section of the MDI sample program.

118 Open32 for OS/2 Warp

// Initialize MDI Child Window
BOOL InitMDIChild(HWND hwnd)
{

// Create a screen compatible memory DC
HDC hdc = GetDC(hwnd);
HDC hdcMem = CreateCompatibleDC(hdc);

// Get the screen size
int cx = GetSystemMetrics(SM_CXSCREEN);
int cy = GetSystemMetrics(SM_CYSCREEN);

// Create a screen size bitmap
HBITMAP hBitmap = CreateCompatibleBitmap(hdc, cx, cy);

// Get the gray brush
HBRUSH hBrush = GetStockObject(LTGRAY_BRUSH);

// Select the bitmap and the gray brush for the memory DC
SelectObject(hdcMem, hBrush);
SelectObject(hdcMem, hBitmap);

// Fill the memory DC on gray
PatBlt(hdcMem, 0, 0, cx, cy, PATCOPY);

// Store the handles of the memory DC and the bitmap
SetWindowLong(hwnd, 0, (LONG)hdcMem);
SetWindowLong(hwnd, 4, (LONG)hBitmap);
ReleaseDC(hwnd, hdc);

return TRUE;
}

Figure 118. InitMDIChild(): Initilize a MDI Child Window

The MDI child window initialization consists of the following activities:

• Create a display compatible memory device context

• Create a screen size bitmap and store it into the memory device context

• Fill the memory device context with gray by calling the PatBlt() function

• Store the handles of the memory device context and the bitmap with the
MDI child window for further use by the drawing functions and resource
release functions when the window is closed

When the MDI child window becomes active upon receipt of the
WM_MDIACTIVE message, MDIWndProc() replaces the main application
menu with the MDI child menu.

Upon receipt of the close request (WM_CLOSE message), MDIWndProc()
switches back to the main application menu and releases the memory
device context and the bitmap created at initialization time.

Chapter 4. MDI Sample Program 119

On receipt of the drawing commands of IDM_BITMAP, IDM_GRAPHICS,
IDM_SCREEN and IDM_TEXT, forwarded by the main window, MDIWndProc()
calls one of the drawing functions to fill the memory device context of the
MDI child window then invalidates its painting area.

The IDM_SCREEN command is treated in a special way: MDIWndProc()
hides at first the main window in order to capture the entire screen image
without the main window, then it starts a timer and waits. This allows for
the redrawing the entire screen. Then on receipt of the WM_TIMER
message, MDIWndProc() call CaptureScreen() to capture the screen image
and fill the MDI child window's memory device context with it. All these
drawing functions will be discussed in 4.5.5, “Drawing Functions” on
page 122.

Each time a MDI child window is invalidated, a WM_PAINT message will be
generated. On receipt of this message, MDIWndProc() gets the device
context handle and the memory device context handle of the MDI child
window, and copies the contents of the second into the first.

Similar to MainWndProc(), MDIWndProc() passes the unprocessed
messages to DefMDIChildProc() instead of DefWindowdProc(). Like
DefFrameProc(), DefMDIChildProc() is a MDI specific function.

//***
//* MDIWndProc
//***
LRESULT CALLBACK MDIWndProc(HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{

static HWND hwndFrame, hwndClient;

switch (message)
{

case WM_CREATE:
{

hwndClient = ((PCREATESTRUCT)lParam)->hwndParent;
hwndFrame = GetParent(hwndClient);
InitMDIChild(hwnd);
break;

}

Figure 119 (Part 1 of 3). MDIWndProc(): MDI Client Window Procedure

120 Open32 for OS/2 Warp

case WM_MDIACTIVATE:
if ((HWND)lParam == hwnd)
{

HMENU hMenu = LoadMenu(hInst, MAKEINTRESOURCE(IDR_MENU_CHILD));
SendMessage(hwndClient, WM_MDISETMENU, (WPARAM)hMenu, (LPARAM)GetSubMenu(hMenu, 2))
DrawMenuBar(hwndFrame);

}
return 0;

case WM_CLOSE:
{

HMENU hMenu = LoadMenu(hInst, MAKEINTRESOURCE(IDR_MENU));
HDC hdcMem = (HDC)GetWindowLong(hwnd, 0);
HBITMAP hBitmap = (HBITMAP)GetWindowLong(hwnd, 4);
SetMenu(hwndFrame, hMenu);
DeleteDC(hdcMem);
DeleteObject(hBitmap);
iMDICount--;
break;

}
case WM_COMMAND:

switch(LOWORD(wParam))
{

case IDM_CLOSE:
SendMessage(hwnd, WM_CLOSE, 0, 0);
break;

case IDM_GRAPHICS:
DrawMyGraphics(hwnd);
break;

case IDM_BITMAP:
DrawMyBitmap(hwnd);
break;

case IDM_TEXT:
DrawMyText(hwnd);
break;

case IDM_SCREEN:
ShowWindow(hwndFrame, SW_HIDE);
SetTimer(hwnd, 1, 1000, (TIMERPROC)MDIWndProc);
break;

}
break;

case WM_TIMER:
CaptureScreen(hwnd);
ShowWindow(hwndFrame, SW_SHOWNORMAL);
KillTimer(hwnd, 1);
break;

Figure 119 (Part 2 of 3). MDIWndProc(): MDI Client Window Procedure

Chapter 4. MDI Sample Program 121

case WM_PAINT:
{

PAINTSTRUCT ps;
HDC hdc, hdcMem;
hdc = BeginPaint(hwnd, &ps);
hdcMem = (HDC)GetWindowLong(hwnd, 0);
BitBlt(hdc, ps.rcPaint.left, ps.rcPaint.top,

ps.rcPaint.right - ps.rcPaint.left,
ps.rcPaint.bottom - ps.rcPaint.top,
hdcMem, ps.rcPaint.left, ps.rcPaint.top, SRCCOPY);

EndPaint(hwnd, &ps);
break;

}
default:

return DefMDIChildProc(hwnd, message, wParam, lParam);
} //switch

return DefMDIChildProc(hwnd, message, wParam, lParam);
}

Figure 119 (Part 3 of 3). MDIWndProc(): MDI Client Window Procedure

4.5.5 Drawing Functions
The basic design of the drawing functions of the MDI sample program is to
draw in the memory device context associated with a MDI child window then
invalidate the MDI child window to generate the WM_PAINT message. On
receipt of this message, MDIWndProc() copies the contents of the memory
device context into the the display device context of the MDI child window.
Each drawing function begins with a request of the memory device context
handle of the MDI child window and ends with invalidating the MDI child
window.

4.5.5.1 Draw Bitmap
Figure 120 on page 123 gives the listing of the bitmap drawing function,
DrawMyBitmap() and Figure 121 on page 124 shows the drawing results in
a MDI child window.

DrawMyBitmap() creates a temporary memory device context, hdcBitmap,
loads a bitmap into it, then fills the MDI child window's memory device
context, hdcMem, with the contents.

122 Open32 for OS/2 Warp

// Draw a bitmap in the MDI child window's memory DC
BOOL DrawMyBitmap(HWND hwnd)
{

HDC hdcMem, hdcBitmap;
HBITMAP hBitmap;
BITMAP bmp;
int x, y, cx, cy;

// Get the MDI child window memory DC
hdcMem = (HDC)GetWindowLong(hwnd, 0);

// Create a bitmap DC and load a bitmap in
hdcBitmap = CreateCompatibleDC(hdcMem);
hBitmap = LoadBitmap(hInst, MAKEINTRESOURCE(IDB_DAPIE));
GetObject(hBitmap, sizeof(BITMAP), (LPSTR) &bmp) ;
SelectObject(hdcBitmap, hBitmap);
cx = GetSystemMetrics(SM_CXSCREEN);
cy = GetSystemMetrics(SM_CYSCREEN);

// Copy the bitmap DC in the MDI child window memory DC
for(x=0; x < cx; x+= bmp.bmWidth)

for(y = 0; y < cy; y+= bmp.bmHeight)
BitBlt(hdcMem, x, y, bmp.bmWidth, bmp.bmHeight, hdcBitmap, 0, 0,SRCCOPY);

// Release resource and invalidate the MDI child window
DeleteDC(hdcBitmap);
DeleteObject(hBitmap);
InvalidateRect(hwnd, NULL, TRUE);

return TRUE;
}

Figure 120. DrawMyBitmap(): Draw Bitmaps

Chapter 4. MDI Sample Program 123

Figure 121. Bitmaps

4.5.5.2 Draw Graphics
Figure 122 gives the listing of the graphics drawing function,
DrawMyGraphics() and Figure 123 on page 125 shows the drawing results.

// Draw graphics
BOOL DrawMyGraphics(HWND hwnd)
{

HDC hdcMem = (HDC)GetWindowLong(hwnd, 0);
int i, r, g, b, x, y, cx, cy;
HBRUSH hBrush, hOldBr;

// Fill the MDI child memory DC on gray
PaintDCGray(hdcMem);

Figure 122 (Part 1 of 2). DrawMyGraphics(): Draw Graphics

124 Open32 for OS/2 Warp

// Draw 10 ellipses with random coordinates, size and color
for(i = 0; i < 10; i++)
{

r = rand()%256; g = rand()%256; b = rand()%256;
x = rand()/100; y = rand()/100;
cx = rand()/100; cy = rand()/100;
hBrush = CreateSolidBrush(RGB(r,g,b));
hOldBr = SelectObject(hdcMem, hBrush);
Ellipse(hdcMem, x, y, x+cx, y+cy);
SelectObject(hdcMem, hOldBr);
DeleteObject(hBrush);

}
InvalidateRect(hwnd, NULL, TRUE);

return TRUE;
}

Figure 122 (Part 2 of 2). DrawMyGraphics(): Draw Graphics

Figure 123. Graphics

DrawMyGraphics() fills the MDI child window's memory device context,
hdcMem, with gray color. Then it draws 10 ellipses of random size, position
and color.

4.5.5.3 Draw Text
Figure 124 on page 126 gives the listing of the text drawing function,
DrawMyText().

Chapter 4. MDI Sample Program 125

// Draw Text
BOOL DrawMyText(HWND hwnd)
{

LOGFONT lf;
CHOOSEFONT cf;
HFONT hFont;
HFONT hFontOld;
int y, r, g, b;
HDC hdc, hdcMem;
hdc = GetDC(hwnd);

// Fill in CHOOSEFONT structure
memset(&cf, 0, sizeof(CHOOSEFONT));
cf.lStructSize = sizeof(CHOOSEFONT);
cf.hwndOwner = hwnd;
cf.hDC = hdc;
cf.lpLogFont = &lf;
cf.iPointSize = 120;
cf.Flags = CF_SCREENFONTS | CF_EFFECTS | CF_LIMITSIZE;
cf.rgbColors = RGB(0, 0, 0);
cf.lCustData = 0L;
cf.lpfnHook = NULL;
cf.lpTemplateName = (LPSTR)NULL;
cf.hInstance = NULL;
cf.lpszStyle = (LPSTR)NULL;
cf.nFontType = SCREEN_FONTTYPE;
cf.nSizeMin = 6;
cf.nSizeMax = 48;

// Show the font selection diolog
if(ChooseFont(&cf))
{

// Create a font base on the selection
hFont = CreateFontIndirect(cf.lpLogFont);

// Get the MDI child window's memory DC and fill it on gray
hdcMem = (HDC)GetWindowLong(hwnd, 0);
PaintDCGray(hdcMem);

// Select the font and set drawing modes
hFontOld = SelectObject(hdcMem, hFont);
SetMapMode(hdcMem, MM_TEXT);
SetBkMode(hdcMem, TRANSPARENT);

Figure 124 (Part 1 of 2). DrawMyText(): Draw Text

126 Open32 for OS/2 Warp

// Draw 8 strings with the same texts but different color
for (r = 0, y = 0; r < 0x100; r += 0xff) {

for (g = 0; g < 0x100; g += 0xff) {
for (b = 0; b < 0x100; b += 0xff) {

SetTextColor(hdcMem, RGB(r, g, b));
TextOut(hdcMem, 0, y, "Welcome to the Open32 World!", 28);
y += lf.lfHeight + 5;

} /* endfor */
} /* endfor */

} /* endfor */
SelectObject(hdcMem, hFontOld);
DeleteObject(hFont);
InvalidateRect(hwnd, NULL, TRUE);

}
ReleaseDC(hwnd, hdc);

return TRUE;
}

Figure 124 (Part 2 of 2). DrawMyText(): Draw Text

DrawMyText() first prompts you to choose a font with the ChooseFont()
common dialog box, as shown in Figure 125.

Figure 125. Font Selection Dialog

Once a font is chosen, DrawMyText() draws the same text string eight times
with each text string in a different color. Figure 126 on page 128 shows the
drawing results.

Chapter 4. MDI Sample Program 127

Figure 126. MDI Text Child Window

4.5.5.4 Capture Screen Image
Figure 127 gives the listing of the screen capture function, CaptureScreen()
and Figure 128 on page 129 shows the drawing results.

// Capture screen image
BOOL CaptureScreen(HWND hwnd)
{

// Get the memory DC
HDC hdcMem = (HDC)GetWindowLong(hwnd, 0);

// Create a screen DC
HDC hdcScreen = CreateDC("DISPLAY", NULL, NULL, NULL);

// Get the screen size
int cx = GetSystemMetrics(SM_CXSCREEN);
int cy = GetSystemMetrics(SM_CYSCREEN);

Figure 127 (Part 1 of 2). CaptureScreen(): Capture Screen Image

128 Open32 for OS/2 Warp

// Copy the screen DC in the memory DC
BitBlt(hdcMem, 0, 0, cx, cy, hdcScreen, 0, 0,SRCCOPY);

// Delete the screen DC
DeleteDC(hdcScreen);

// Invalidate the MDI child window
InvalidateRect(hwnd, NULL, TRUE);

return TRUE;
}

Figure 127 (Part 2 of 2). CaptureScreen(): Capture Screen Image

Figure 128. MDI Screen Capture Child Window

As explained in 4.5.4, “MDIWndProc()” on page 118, CaptureScreen() is
called on receipt of the WM_TIMER message. It simply opens a Display
device context and copies the contents of the screen image into the MDI
child window's memory device context.

4.6 Migration

After coding and testing the MDI sample program in the Windows
environment, we can port the program to OS/2. Since the MDI sample
program is a common source code application, the migrating steps are

Chapter 4. MDI Sample Program 129

exactly the same as the ones described in Chapter 3, “Howdy, World!” on
page 79:

• Convert the bitmap file dapie.bmp

• Convert the icon file dapie.ico

• Convert the resource file mdi.rc

• Make the system header files changes in the mdi.c file

from:
#include <windows.h>
#include <commdlg.h>

to: // system header files
#ifdef OS2 // for OS2
#include <os2win.h>
#else // for Win32
#include <windows.h>
#include <commdlg.h>
#endif

The value OS2 is a precompiler variable defined for the VisualAge
C++ compiler in the OS/2 MAKEFILE.

• Copy the main.c file from OS/2 Warp Toolkit

• Create a new module definition file

• Create a project makefile

• Compile the resources

• Compile the C source files

• Link the application and bind the resources

Figure 129 shows the DEF file for the MDI sample program to be used for
OS/2.

Figure 130 on page 131 shows the MAKEFILE for the MDI sample program
to be used for OS/2.

// mdi.def :DEF file for OS/2
NAME MDI WINDOWAPI
DESCRIPTION 'Open32 MDI Sample Prgram (c) IBM, 1996'
STACKSIZE 65536

Figure 129. MDI Sample Program's DEF File

130 Open32 for OS/2 Warp

// makefile : MAKEFILE for OS/2
proj = mdi
cflags = /C /DOS2 /N3 /Ss /Ti /Wgen /Wpro
lflags = /CO
llib = pmwinx.lib

$(proj).exe : $*.obj main.obj $*.res
ilink $(lflags) $*.obj main.obj $(llib) $*.def
rc $*.res $*.exe

$(proj).obj: $*.c resource.h
icc $(cflags) $*.c

main.obj: $*.c
icc $(cflags) $*.c

$(proj).res: $*.rc resource.h
rc -r $*.rc

Figure 130. MDI Sample Program's MAKEFILE

Note

The debug compile and linking options are used. Once the program is
tested, you can remove them.

Figure 131 on page 132 shows the MDI sample program file structure and
the operating system dependent headers libraries and resources for
building both the OS/2 and Win32 executable programs from the same
common source code.

The MDI and HOWDY sample programs have demonstrated the techniques
involved in developing Open32 applications which share a common code
base between the OS/2 and Windows programs. In the upcoming chapters
we will discuss how to work with programs which do not completely shared
the same source code.

Chapter 4. MDI Sample Program 131

Figure 131. MDI Sample Program's File Structure

132 Open32 for OS/2 Warp

Chapter 5. Mixed Mode Sample Program

This chapter describes the mixed mode sample program. This sample
program is a mixed mode application which uses a Win32 window class
unsupported by Open32 in the Windows version of the program and uses an
equivalent OS/2 window class in the OS/2 version of the program.

The mixed mode sample program was a new application development effort
and this chapter will discuss the programming techniques used to design
and code the application such that it has a common code base along with
platform dependent code. The platform dependent part is combined with the
common code base to build the application program for either the OS/2 or
Win32 environment.

5.1 Application Overview

The sample program described in this chapter looks quite simple. It opens
a main application window and displays a message in the center of the
main window, as shown in Figure 132.

Figure 132. Mixed Mode Sample Program Overview

You can change the message's properties from the File pull-down menu
using the Properties option, as shown in Figure 133 on page 134.

 Copyright IBM Corp. 1996 133

Figure 133. Mixed Mode Sample Program Main Menu

The message's properties are its text and color. By selecting the Properties
option of the File pull-down, you can open a dialog box. The dialog box
contains a Tab control in the Win32 version. Since the Tab control is not
supported by Open32, when the application is migrated to OS/2, it needs to
be replaced. In the mixed mode sample program, we have chosen to use
an OS/2 notebook control to replace the Tab control.

These two controls provide the end user with the same functions but the
implementation is very different as you will see in the mixed mode sample
program.

Note

For simplicity, we will use the term Notebook interchangeably for Win32
Tab control and OS/2 notebook control.

134 Open32 for OS/2 Warp

Figure 134. Mixed Mode Message Properties Tab Control on Windows 95

Figure 135. Mixed Mode Message Properties Notebook on OS/2

Figure 134 shows the text properties of the mixed mode sample program on
the Windows 95 platform using the Win32 Tab control. Figure 135 for
comparison shows the text properties of the sample using the Notebook
control on the OS/2 Warp platform. Figure 136 on page 136 and Figure 137
on page 136 show the color properties on the Windows 95 and OS/2
platforms respectively. You can select the text and color tabs and modify
the text and color of the message. The changes will become effective when

Chapter 5. Mixed Mode Sample Program 135

you close the Message Properties Dialog. You can use the Undo
pushbutton to cancel the changes or the Default pushbutton to set the
default text and color at any time. This will override any changes you have
made using the message properties dialog.

Figure 136. Mixed Mode Color Page on Windows 95

Figure 137. Mixed Mode Color Page on OS/2

136 Open32 for OS/2 Warp

5.2 Source Files

Table 4 lists all the source files used by the mixed mode sample program.
You will find these files on the CD-ROM in this redbook in the MIXMODE
directory and in its two subdirectories, OS2 and WIN32. The OS2 and
WIN32 subdirectories contain platform specific files for OS/2 and Windows.

The MIXMODE directory contains the files common to both OS/2 and
Windows.

Table 4. Mixed Mode Sample Program Source Files

LOCATION NAME DESCRIPTION

MIXMODE MIXMODE.C Common source code file

MIXMODE RESOURCE.H Common resource header file

MIXMODE OS2 MAIN.C OS/2 specific source file

MIXMODE OS2 and
MIXMODE WIN32

DEPEND.C OS/2 and Windows specific
source code file

MIXMODE OS2 and
MIXMODE WIN32

DEPEND.H OS/2 and Windows specific
header file

MIXMODE OS2 and
MIXMODE WIN32

MIXMODE.RC OS/2 and Windows specific
resource file

MIXMODE OS2 MAKEFILE OS/2 specific makefile

MIXMODE WIN32 MIXMODE.MAK Windows specific makefile

MIXMODE OS2 MIXMODE.DEF OS/2 specific module definition
file

MIXMODE OS2 and
MIXMODE WIN32

MIXMODE.ICO OS/2 and Windows specific icon
resource file

5.3 Application Design

The mixed mode sample program has five components. They are:

• Main application window

• Message properties dialog box

• Notebook control

• Text dialog box

• Color dialog box

as shown in Figure 138 on page 138.

Since the notebook control is platform specific, the separation between the
common and platform specific source code is between the application main
window and the message property dialog box. As a result, the application

Chapter 5. Mixed Mode Sample Program 137

main window code goes into the common source code base, MIXMODE.C
file, along with the application entry point function WinMain(), while the
other components are implemented in a platform specific file, DEPEND.C.
Two functions, GetGMessage() and SetGMessage(), are defined to interface
between the common and platform specific source codes. They isolate the
platform specific features from the common source code base. These two
functions are discussed in 5.4, “Coding.”

Figure 138. Mixed Mode Sample Program Architecture

5.4 Coding

The coding can be done on Windows 95 or NT. Microsoft Visual C++
Version 4.0 development tools can be used to develop the program. In this
section we will discuss the coding that was done uniquely for the mixed
mode sample program.

138 Open32 for OS/2 Warp

5.4.1 Resources
The resource file for the Windows version of the mixed mode application
can be found in the MIXMODE.RC file in the WIN32 subdirectory of the
CD-ROM in this redbook. The resource file defines the resources used by
the application including the message property dialog box with the tab
control, the text and color dialog boxes. The window procedures for these
dialog boxes will be discussed in 5.4.3, “Platform Specific Code” on
page 141. For comparison the OS/2 version of this resource file will be
covered later in this chapter in 5.5.3, “Converting Platform Specific Source
Code” on page 151. A copy of the Windows version is shown in Figure 139.

// mixmode.rc : Mixed Mode Sample Program's Resources
// Icon
IDI_ICON ICON DISCARDABLE "mixmode.ico"
IDI_DAPIE ICON DISCARDABLE "dapie.ico"

// Menu
IDR_MENU MENU DISCARDABLE
BEGIN

POPUP "&File"
BEGIN

MENUITEM "&Properties", IDM_PROP
MENUITEM "&Exit", IDM_EXIT

END
POPUP "&Help"
BEGIN

MENUITEM "&About...", IDM_ABOUT
END

END

// About Dialog
IDD_ABOUT DIALOG DISCARDABLE 0, 0, 186, 95
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "About Mixed Mode Sample"
FONT 8, "MS Sans Serif"
BEGIN

DEFPUSHBUTTON "OK",IDOK,67,74,50,14
ICON IDI_ICON,IDI_ICON,160,68,18,20
LTEXT "Open32 MIXMODE Sample",IDC_STATIC,54,18,78,8
ICON IDI_DAPIE,IDC_STATIC,7,68,18,20
CTEXT "(C) Copyright IBM Corp. 1996",IDC_STATIC,47,37,92,8
CTEXT "Developed by IBM ITSC Austin",IDC_STATIC,41,56,103,8

END

Figure 139 (Part 1 of 2). Mixed Mode Sample Program's Resources (MIXMODE.RC)

Chapter 5. Mixed Mode Sample Program 139

// Message Property dialog
IDD_BOOK DIALOG DISCARDABLE 0, 0, 205, 125
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
FONT 8, "MS Sans Serif"
BEGIN

CONTROL "Tab1",IDC_NOTEBOOK,"SysTabControl32",0x0,7,7,191,111
END

// Text dialog
IDD_TEXT DIALOG DISCARDABLE 2, 14, 186, 94
STYLE WS_CHILD
FONT 8, "MS Sans Serif"
BEGIN

DEFPUSHBUTTON "&Undo",IDC_UNDO,7,73,50,14
PUSHBUTTON "&Default",IDC_DEFAULT,68,73,50,14
LTEXT "Text:",IDC_STATIC_TEXT,7,32,17,8
EDITTEXT IDC_EDIT_TEXT,7,42,172,14,ES_AUTOHSCROLL

END

// Color dialog
IDD_COLOR DIALOG DISCARDABLE 2, 14, 183, 92
STYLE WS_CHILD
FONT 8, "MS Sans Serif"
BEGIN

PUSHBUTTON "&Undo",IDC_UNDO,7,71,50,14
PUSHBUTTON "&Default",IDC_DEFAULT,63,71,50,14
LISTBOX IDC_LIST_COLOR,7,7,105,61,LBS_NOINTEGRALHEIGHT |

WS_VSCROLL | WS_TABSTOP
LTEXT "",IDC_STATIC_COLOR,119,7,57,61

END

Figure 139 (Part 2 of 2). Mixed Mode Sample Program's Resources (MIXMODE.RC)

5.4.2 Common Source Code
The common source code is in the file MIXMODE.C which can be found in
the MIXMODE directory of the CD-ROM in this redbook. It is similar to the
Open32 applications described in Chapter 3, “Howdy, World!” on page 79
and Chapter 4, “MDI Sample Program” on page 103. You may wish to
reference the MIXMODE.C common source code to see how the application
design that follows was actually coded in the program.

The program contains three functions. They are:

• Application entry point WinMain()

• Main window procedure MainWndProc()

• About dialog procedure AboutDlgProc()

Instead of processing the Properties dialog function in this code, the
program uses the interface functions, GetGMessage() and SetGMessage() to
communicate with the dependent code section where these functions are

140 Open32 for OS/2 Warp

performed. The prototypes of these functions can be seen in the header file
DEPEND.H shown in Figure 140 on page 141.

MainWndProc() stores the message properties in a private static structure
variable, named gmessage, of type GMESSAGE and uses it to exchange
data with the GetGMessage() and SetGMessage() functions. GMESSAGE
data structure has two fields: one field to hold the message text and one
field to hold the message color.

On receipt of the MDI WM_CREATE message, the main window procedure,
MainWndProc(), calls the interface function, GetGMessage(), to get the
default values of the message properties.

On receipt of the Properties option of the File pull-down menu the
WM_COMMAND message, MainWndProc() calls the SetGmessage() to open
the message properties dialog box. It then waits for the return of the new
message properties values.

On receipt of the WM_PAINT message, MainWndProc() retrieves the
message property values in the variable gmessage. It then draws the
message in the client area with the text and color found in the variable
gmessage.

// mixmode.h

// Greeting message properties data type
typedef struct _GMESSAGE {

CHAR szText[64]; // Message text
ULONG ulColor; // Message text color

} GMESSAGE, *PGMESSAGE;

// Greeting message function prototypes
BOOL GetGMessage(PGMESSAGE pgmsg);
BOOL SetGMessage(HWND hwnd, PGMESSAGE pgmsg);

Figure 140. Mixed Mode Interface Data Type and Function Prototypes (DEPEND.H)

5.4.3 Platform Specific Code
The platform specific code is contained in the C code file DEPEND.C. The
Windows version of this dependent code can be found in the WIN32
subdirectory of the MIXMODE directory on the CD-ROM in this redbook.
For reference in the discussion of this code that follows a copy of the
Windows version of DEPEND.C is shown in Figure 141 on page 144.

• GetGMessage() and SetGMessage()

Chapter 5. Mixed Mode Sample Program 141

These two functions provide the interface between the common and
platform specific code. The GetGmessage() function simply fills in the
input structure with the default value for the message properties and
returns. The SetGMessage() records the input structure address in a
static global variable to make it visible to all the private functions in the
file. It then loads the message property dialog box to get user's input.

• BookDlgProc()

BookDlgProc() is the window procedure of the message property dialog
box. Its main role is to insert the text and the color pages into its
notebook. It is done by the function InitBook().

A page in a notebook is in fact a dialog box. The text and the color
pages are respectively the text and the color dialog boxes.

When the message property dialog box is closed by the user, the
notebook will be destroyed and a WM_DESTROY message will be sent
to the text and color dialog boxes.

• TextDlgProc()

TextDlgProc() is the window procedure of the text dialog box. The text
dialog box has an edit field. On receipt of the WM_INITDIALOG
message, TextDlgProc() initializes the edit field with the last edited
message text stored in the input GMESSAGE data structure. Remember
the text field in this data structure was filled with the default message
text when the GetGMessage() was called.

On receipt of the pushbutton command WM_COMMAND->UNDO,
TextDlgProc() restores the edit field with its initial text.

On receipt of the pushbutton command WM_COMMAND->DEFAULT,
TextDlgProc() restores the edit field with the default text.

On receipt of the WM_DESTROY message, TextDlgProc() retrieves the
text in the edit field and puts it in the text field of the input GMESSAGE
data structure.

• ColorDlgProc()

ColorDlgProc() is the window procedure of the color dialog box. The
color dialog box uses a list box to present the 16 color choices and a
static control to show the color currently selected. ColorDlgProc() is
based on a few static global variables:

- aszColor[]

aszColor[] is an array of 16 text strings. Each element in the array
contains the name of a color from black to white.

- aulColor[]

142 Open32 for OS/2 Warp

aulColor[] is an array of 16 ULONG (unsigned long integer). Each
element in the array contains the RGB color value corresponding to
the color name in the aszColor[] array with the same index. Notice
that the RGB macro is used to fabricate RGB colors. This macro is
defined in Win32 API header files.

- iSave, iCurrent and iDefault

These variables are all integers. They contain an item index in the
color selection list box. Since they are initialized to zero, on the first
call of ColorDlgProc(), they point to the same color - the black color.
Remember the GetGMessage() function also uses the black color to
initialize the color field of the input GMESSAGE data structure.

iDefault always points to the black color.

iCurrent keeps track of the current selection in the color list box.

iSave is used to save the value of iCurrent on each entry of the color
dialog box.

On receipt of the WM_INITDIALOG message, TextDlgProc() initializes the
list box with the 16 color names stored in aszColor[] and selects the
color using iCurrent as an item index in the list box. It also saves the
value of iCurrent into iSave.

When a color is selected, the list box notifies the color dialog box with
the WM_COMMAND->LBN_SELCHANGE message. Then ColorDlgProc()
will store the item index of the currently selected color in the list box
into iCurrent and change the color of the static control with the selected
color.

The color change of the static control is achieved in an indirect way. At
first the ChangeColor() function is called to create a brush of the
selected color and invalidate the static control window. Before
repainting the static control window, Windows sends the
WM_CTLCOLORSTATIC message to ask the brush to paint the static
control window. At this time, ColorDlgProc() returns the handle of the
just created brush.

On receipt of the pushbutton command WM_COMMAND->UNDO,
ColorDlgProc() restores the initial color using iSave as the item index in
the color list box.

On receipt of the pushbutton command WM_COMMAND->DEFAULT,
ColorDlgProc() restores the default using iDefault as the item index in
the color list box.

Chapter 5. Mixed Mode Sample Program 143

On receipt of the WM_DESTROY message, ColorDlgProc() retrieves the
color value in the aulColor[] array using iCurrent as an index and
places it in the color field of the input GMESSAGE data structure.

// depend.c for Win32
#include <windows.h>
#include <commctrl.h>
#include <string.h>

#include "depend.h"
#include "resource.h"

// Static global variables
extern HINSTANCE hInst;
static PGMESSAGE pgmsg;
static HWND hwndText, hwndColor;
static CHAR szDefault[] = "Hello, the World!";
int iSave = 0, iCurrent = 0, iDefault = 0;
CHAR aszColor[16][16] = {
"Black", "Dark Blue", "Dark Green", "Dark Cyan", "Dark Red", "Dark Magenta", "Dark Yellow", "Dark Gra
"White", "Blue", "Green", "Cyan", "Red", "Magenta", "Yellow", "Gray"

};
static ULONG aulColor[] = {

RGB(0, 0, 0), // black
RGB(0, 0, 0x7F), // dark blue
RGB(0, 0x7F, 0), // dark green
RGB(0, 0x7F, 0x7F), // dark cyan
RGB(0x7F, 0, 0), // dark red
RGB(0x7F, 0, 0x7F), // dark magenta
RGB(0x7F, 0x7F, 0), // dark yellow
RGB(0x3F, 0x3F, 0x3F), // dark gray
RGB(0x7F, 0x7F, 0x7F), // gray
RGB(0, 0, 0xFF), // blue
RGB(0, 0xFF, 0), // green
RGB(0, 0xFF, 0xFF), // cyan
RGB(0xFF, 0, 0), // red
RGB(0xFF, 0, 0xFF), // magenta
RGB(0xFF, 0xFF, 0), // yellow
RGB(0xFF, 0xFF, 0xFF), // White

};

// Private function prototypes
BOOL CALLBACK BookDlgProc (HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam);
BOOL CALLBACK TextDlgProc (HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam);
BOOL CALLBACK ColorDlgProc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam);
HWND InitBook (HWND hwnd);
HWND InitColor(HWND hwnd);
BOOL ChangePage(LPNMHDR pnmhdr);
HBRUSH ChangeColor(HWND hwnd, HBRUSH hOldBrush, ULONG ulNewColor);

Figure 141 (Part 1 of 6). Mixed Mode Win32 Platform Specific Code (DEPEND.C)

144 Open32 for OS/2 Warp

// Get greating message default text and color, and initialize common controls
BOOL GetGMessage(PGMESSAGE pgmessage)
{

// Initialize the common controls.
InitCommonControls();

strcpy(pgmessage->szText, szDefault);
pgmessage->ulColor = aulColor[iDefault];

return TRUE;
}

BOOL SetGMessage(HWND hwnd, PGMESSAGE pgmessage)
{

pgmsg = pgmessage;
DialogBox(hInst, MAKEINTRESOURCE(IDD_BOOK), hwnd, BookDlgProc);

return TRUE;
}

// Book Dialog procedure. */
BOOL CALLBACK BookDlgProc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam)
{

switch (msg)
{

case WM_INITDIALOG:
InitBook(hwnd);
break;

case WM_NOTIFY:
ChangePage((LPNMHDR)lParam);
return TRUE;

case WM_CLOSE:
{

EndDialog(hwnd, TRUE);
return TRUE;

}
}

return FALSE;
}

// Text Dialog procedure. */
BOOL CALLBACK TextDlgProc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam)
{

static HWND hwndEdit;

Figure 141 (Part 2 of 6). Mixed Mode Win32 Platform Specific Code (DEPEND.C)

Chapter 5. Mixed Mode Sample Program 145

switch (msg)
{

case WM_INITDIALOG:
hwndEdit = GetDlgItem(hwnd, IDC_EDIT_TEXT);
SetWindowText(hwndEdit, pgmsg->szText);
break;

case WM_DESTROY:
{

GetWindowText(hwndEdit, pgmsg->szText, sizeof pgmsg->szText);
EndDialog(hwnd, TRUE);
return TRUE;

}
case WM_COMMAND:

switch(LOWORD(wParam))
{

case IDC_UNDO:
SetWindowText(hwndEdit, pgmsg->szText);
break;

case IDC_DEFAULT:
SetWindowText(hwndEdit, szDefault);
break;

default:
break;

} /* endswitch */
break;

}

return FALSE;
}

// Color Dialog procedure
BOOL CALLBACK ColorDlgProc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam)
{

static HWND hwndStatic, hwndList;
static HBRUSH hBrush;

switch (msg)
{

case WM_INITDIALOG:
iSave = iCurrent;
hwndStatic = GetDlgItem(hwnd, IDC_STATIC_COLOR);
hBrush = ChangeColor(hwndStatic, NULL, aulColor[iCurrent]);
hwndList = InitColor(hwnd);
break;

Figure 141 (Part 3 of 6). Mixed Mode Win32 Platform Specific Code (DEPEND.C)

146 Open32 for OS/2 Warp

case WM_DESTROY:
pgmsg->ulColor = aulColor[iCurrent];
return TRUE;

case WM_COMMAND:
switch(LOWORD(wParam))
{

case IDC_UNDO:
iCurrent = iSave;
SendMessage(hwndList, LB_SETCURSEL, (WPARAM)iCurrent, 0);
hBrush = ChangeColor(hwndStatic, hBrush, aulColor[iCurrent]);
break;

case IDC_DEFAULT:
iCurrent = iDefault;
SendMessage(hwndList, LB_SETCURSEL, (WPARAM)iCurrent, 0);
hBrush = ChangeColor(hwndStatic, hBrush, aulColor[iCurrent]);
break;

case IDC_LIST_COLOR:
if (HIWORD(wParam) == LBN_SELCHANGE)
{

iCurrent = SendMessage((HWND) lParam, LB_GETCURSEL, 0, 0);
hBrush = ChangeColor(hwndStatic, hBrush, aulColor[iCurrent]);

}
break;

} /* endswitch */
break;

case WM_CTLCOLORSTATIC:
if ((HWND)lParam == hwndStatic)

return (BOOL)hBrush;
break;

}

return FALSE;
}

// Initialize note book
HWND InitBook(HWND hwnd)
{

HWND hwndBook;
TC_ITEM tci;

// Get TabControl handle
hwndBook = GetDlgItem(hwnd, IDC_NOTEBOOK);

// Create the Text and Color dialogs
hwndText = CreateDialog(hInst, MAKEINTRESOURCE(IDD_TEXT), hwndBook, TextDlgProc);
hwndColor = CreateDialog(hInst, MAKEINTRESOURCE(IDD_COLOR), hwndBook, ColorDlgProc);

Figure 141 (Part 4 of 6). Mixed Mode Win32 Platform Specific Code (DEPEND.C)

Chapter 5. Mixed Mode Sample Program 147

// Insert Text Page
tci.mask = TCIF_TEXT;
tci.iImage = -1;
tci.pszText= "&Text";
TabCtrl_InsertItem(hwndBook, 0 , &tci);

// Insert Color Page
tci.mask = TCIF_TEXT;
tci.iImage = -1;
tci.pszText= "&Color";
TabCtrl_InsertItem(hwndBook, 1 , &tci);

ShowWindow(hwndText, SW_SHOW);

return hwndBook;
}

HWND InitColor(HWND hwnd)
{

HWND hwndList;
int i;

hwndList = GetDlgItem(hwnd, IDC_LIST_COLOR);
for (i = 0; i < 16; i++)
{

// Set Red slider range
SendMessage(hwndList, LB_ADDSTRING, 0, (LPARAM)aszColor[i]);

}
SendMessage(hwndList, LB_SETCURSEL, (WPARAM)iCurrent, 0);

return hwndList;
}

// Change note book page
BOOL ChangePage(LPNMHDR pnmhdr)
{

if(pnmhdr->code == TCN_SELCHANGE)
{

int iTab = TabCtrl_GetCurSel((HWND)pnmhdr->hwndFrom);

ShowWindow(hwndText, (iTab == 0) ? SW_SHOW : SW_HIDE);
ShowWindow(hwndColor, (iTab == 1) ? SW_SHOW : SW_HIDE);

}
return TRUE;

}

HBRUSH ChangeColor(HWND hwnd, HBRUSH hOldBrush, ULONG ulNewColor)
{

HBRUSH hNewBrush;

Figure 141 (Part 5 of 6). Mixed Mode Win32 Platform Specific Code (DEPEND.C)

148 Open32 for OS/2 Warp

if (hOldBrush)
DeleteObject(hOldBrush);

hNewBrush = CreateSolidBrush(aulColor[iCurrent]);
InvalidateRect(hwnd, NULL, TRUE);

return hNewBrush;
}

Figure 141 (Part 6 of 6). Mixed Mode Win32 Platform Specific Code (DEPEND.C)

5.5 Migration

Since the mixed mode sample program is a mixed mode application, the
migration steps are different from the ones of the Open32 applications
described in Chapter 3, “Howdy, World!” on page 79 and Chapter 4, “MDI
Sample Program” on page 103. However many of the steps for migrating
Open32 applications can still be applied here.

5.5.1 Converting Resources
Follow the migration steps described in 3.1, “Overview of the Migration
Process” on page 79 to convert the MIXMODE.RC resource file.

Since the Win32 Tab control in the message property dialog box is not
supported by Developer API Extensions, SMART cannot translate it and
leaves it unchanged. We choose to replace it by its OS/2 equivalent control
- the notebook control. Figure 142 shows the converted MIXMODE.RC after
modification.

After the resource conversion, you can use the OS/2 dialog box editor to
check the message property dialog box, adjust the notebook's size and
change its styles and attributes.

// mixmode.rc
#include <os2.h>
#include "resource.h"

// Icon
ICON IDI_ICON DISCARDABLE "mixmode.ico"
ICON IDI_DAPIE DISCARDABLE "dapie.ico"

Figure 142 (Part 1 of 3). Mixed Mode Converted Resources for OS/2

Chapter 5. Mixed Mode Sample Program 149

// Menu
MENU IDR_MENU DISCARDABLE
BEGIN

SUBMENU " File", 0xF200
BEGIN

MENUITEM " Properties", IDM_PROP
MENUITEM " Exit", IDM_EXIT

END
SUBMENU " Help", 0xF201
BEGIN

MENUITEM " About...", IDM_ABOUT
END

END

// Dialog
DLGTEMPLATE IDD_BOOK LOADONCALL MOVEABLE DISCARDABLE
BEGIN

DIALOG "Message Properties", IDD_BOOK, 12, 2, 257, 125, , FCF_SYSMENU |
FCF_TITLEBAR

BEGIN
NOTEBOOK IDC_BOOK, 0, 0, 257, 125, BKS_BACKPAGESTR |

BKS_MAJORTABTOP | BKS_ROUNDEDTABS |
BKS_SPIRALBIND | WS_GROUP

END
END

DLGTEMPLATE IDD_ABOUT LOADONCALL MOVEABLE DISCARDABLE
BEGIN

DIALOG "About Mixed Mode Sample", IDD_ABOUT, 59, 44, 233, 95,
FS_SCREENALIGN | WS_VISIBLE, FCF_SYSMENU | FCF_TITLEBAR

BEGIN
DEFPUSHBUTTON "OK", DID_OK, 84, 7, 63, 14
ICON IDI_ICON, IDI_ICON, 200, 11, 20, 16
CTEXT "DAPIE Mixmode Sample", IDC_STATIC, 68, 69, 98, 8,

DT_WORDBREAK | DT_MNEMONIC
ICON IDI_DAPIE, IDC_STATIC, 9, 11, 20, 16
CTEXT "(C) Copyright IBM Corp. 1996", IDC_STATIC, 59, 50,

115, 8, DT_WORDBREAK | DT_MNEMONIC
CTEXT "Developed by IBM ITSC Austin", IDC_STATIC, 52, 31,

129, 8, DT_WORDBREAK | DT_MNEMONIC
END

END

Figure 142 (Part 2 of 3). Mixed Mode Converted Resources for OS/2

150 Open32 for OS/2 Warp

DLGTEMPLATE IDD_TEXT LOADONCALL MOVEABLE DISCARDABLE
BEGIN

DIALOG "", IDD_TEXT, 3, 0, 233, 94, NOT FS_DLGBORDER
BEGIN

DEFPUSHBUTTON " Undo", IDC_UNDO, 9, 7, 63, 14
PUSHBUTTON " Default", IDC_DEFAULT, 85, 7, 63, 14
LTEXT "Text:", IDC_STATIC_TEXT, 9, 54, 22, 8, DT_WORDBREAK |

DT_MNEMONIC
ENTRYFIELD "", IDC_EDIT_TEXT, 11, 39, 211, 11, ES_MARGIN

END
END

DLGTEMPLATE IDD_COLOR LOADONCALL MOVEABLE DISCARDABLE
BEGIN

DIALOG "", IDD_COLOR, 3, 0, 233, 94, NOT FS_DLGBORDER
BEGIN

PUSHBUTTON " Undo", IDC_UNDO, 9, 7, 63, 14
PUSHBUTTON " Default", IDC_DEFAULT, 79, 7, 63, 14
LISTBOX IDC_LIST_COLOR, 9, 24, 132, 61, LS_NOADJUSTPOS | WS_TABSTOP
LTEXT "", IDC_STATIC_COLOR, 149, 24, 72, 61, SS_TEXT | DT_WORDBREAK | DT_MNEMONIC

END
END

Figure 142 (Part 3 of 3). Mixed Mode Converted Resources for OS/2

5.5.2 Converting Common Source Code
The change in the resource file does not have any impact on the common
source code, because, as explained earlier, the common source code uses
the interface functions which isolates it from the platform specific features.
You perform the same steps as were described in 4.6, “Migration” on
page 129 to convert the MIXMODE.C file.

5.5.3 Converting Platform Specific Source Code
For Windows application developers who are not familiar with OS/2 native
API and window classes/messages, the simplest way to convert the platform
specific source code is to use the SMART migration tool. Following are the
steps for migrating the mixed mode sample DEPEND.C Win32 code to OS/2
code:

1. Defining an LST file

SMART requires that you build a file with an extension of LST to indicate
the names of your source code and header files to be analyzed. The
following instructions tell you how to create a LST file.

a. Go to the File pull-down menu and select the Maintain a
List-of-Files... option, as shown in Figure 143 on page 152.

Chapter 5. Mixed Mode Sample Program 151

Figure 143. SMART Defined List of Files: File Pull-Down Menu

b. On the Select File for List-of-Files dialog, type the name of the file
you wish to create in the File entry field. Select the OK pushbutton,
as shown in Figure 144 on page 153.

152 Open32 for OS/2 Warp

Figure 144. SMART Defined List of Files: Select File for List-of-Files Dialog

c. SMART displays a message box to ask you to confirm the new list
file creation. Select the OK pushbutton.

d. On the Files List dialog, select the Add... pushbutton, as shown in
Figure 145 on page 154.

Chapter 5. Mixed Mode Sample Program 153

Figure 145. SMART Defined List of Files: Files List Dialog

e. You will be presented the Add Files To List dialog as shown in
Figure 146 on page 155. Select the DEPEND.H and DEPEND.C files
you want to analyze from the Filenames list box then select the Add
pushbutton. When you have finished adding files, select the Close
pushbutton.

154 Open32 for OS/2 Warp

Figure 146. SMART Defined List of Files: Add Files To List Dialog

f. You will be returned to the Files List dialog shown in Figure 145 on
page 154. Select the Save pushbutton to save the LST file you have
created.

2. Selecting the Migration Table

You need to identify the migration table to be used by SMART for the
migration of Win32 code to OS/2 code in the following way:

a. Go to the Tables pull-down menu and select the Select Tables...
option, as shown in Figure 147 on page 156.

Chapter 5. Mixed Mode Sample Program 155

Figure 147. SMART Select Migration Table: Table Pull-Down Menu

b. You will be presented the Migration Tables dialog shown in
Figure 148 on page 157. Use the Select1... pushbutton to select the
SMART TABLES WIN32OS2 WIN32OS2.TBL as the
migration table. Make sure the Do Not Use UDMD Table check box

is checked, then select the Set pushbutton to have your setting
remembere d by the SMART tool.

156 Open32 for OS/2 Warp

Figure 148. SMART Selected Migration Table: Migration Tables Dialog

3. Analyzing the Source Code

a. Go to the Analysis pull-down menu and select the Analyze Source
Code... option, as shown in Figure 149.

Figure 149. SMART Analyzer Source Code: Analysis Pull-Down Menu

Chapter 5. Mixed Mode Sample Program 157

b. You will be presented the Source Code Analysis dialog shown in
Figure 150 on page 158. Select the Process pushbutton to start the
analysis of the files that are placed in the List-of-Files using the
migration table you selected.

Figure 150. SMART Analyzer Source Code: Source Code Analysis Dialog

c. When the analysis is complete, you will be presented an analysis
report as shown in Figure 151 on page 159. It will give you an
estimation of the effort required to migrate the source code between
Win32 and OS/2.

158 Open32 for OS/2 Warp

Figure 151. SMART Analyzer Source Code: Source Code Analysis Report

4. Migrating the Source Code

a. Go to the Migration pull-down menu and select the Migrate Source
Code... option, as shown in Figure 152.

Figure 152. SMART Migrate Source Code: Migrate Pull-Down Menu

b. You will be presented with the Migration Process Options dialog
shown in Figure 153 on page 160. You can use the default values
and select the Process pushbutton to start the migration.

Chapter 5. Mixed Mode Sample Program 159

Figure 153. SMART Migrate Source Code: Migration Process Options

c. After the automated SMART migration process is complete, you will
need to edit the converted DEPEND.C file to manually complete the
migration. You need to replace the Win32 API functions with the
OS/2 API functions.

In many cases, SMART is able to suggest equivalent OS/2 API functions
or window messages for Win32 ones in the code. The migration work
becomes a simple replacement of function names with eventual
modification in parameters. You can see how this was done for the
DEPEND.C source code by comparing the two versions of the code found
in the OS/2 and WIN32 subdirectories of the MIXMODE directory on the
CD-ROM in this redbook. You may also visually compare the Win32
version shown in Figure 141 on page 144 with the OS/2 version shown
in Figure 154 on page 162.

160 Open32 for OS/2 Warp

There are some functions where a one-to-one correspondence does not
exist. Following are the differences between Win32 and OS/2 that were
also addressed in the DEPEND.C code sample.

• Notification messages

On OS/2, the notification messages are sent through the
WM_CONTROL message instead of the WM_COMMAND message on
Win32. For example, the list box LBN_SELCHANGE notification
message in the color dialog box is sent through the WM_COMMAND
message on the Win32 version. When migrated to OS/2, it must not
only be changed to LN_SELECT, but also put in the WM_CONTROL
processing section.

• OS/2 Notebook Control verses Win32 Tab Control

OS/2 notebook control switches the pages for you when page tab is
clicked while Win32 Tab control sends you a notification message.
In the Win32 code, you hide the undesired page and show the
desired one. This code is not needed in the OS/2 migrated code.

• Static control color

In OS/2 you call WinSetPresParam() to change a window's
presentation parameters including its colors. In Win32 for the static
control, you have to create a brush of the color you wish to use and
provide the handle of the brush to Windows each time it repaints the
static control.

• RGB Color

Although both OS/2 and Win32 use a ULONG to represent a RGB
color, the format used is different as shown in Table 5.

Table 5. RGB Color Format on OS/2 and Win32

Platform Bit 0-7 Bit 8-15 Bit 16-23

OS/2 Blue Green Red

Win32 Red Green Blue

You need to use the RGBCONVERT macro to convert the color
format before returning it back to the common source code.

Chapter 5. Mixed Mode Sample Program 161

//***
//* Depend.c for OS/2
//***
#define INCL_DOS
#define INCL_WIN
#define INCL_GPI
#include <os2.h>
#include <string.h>

#include "depend.h"
#include "resource.h"

// Macro definition
#define RGB(r,g,b) ((ULONG)(((UCHAR)(b)|((USHORT)((UCHAR)(g))<<8))|(((USHORT)(UCHAR)(r))<<16)))
#define RGBCONVERT(rgb) ((ULONG)(((rgb & 0x000000FF)<<16)|((rgb & 0x00FF0000)>>16)|(rgb & 0x0000FF00)

// Private variable definition
static PGMESSAGE pgmsg;
static CHAR szDefault[] = "Hello, the World!";
int iSave = 0, iCurrent = 0, iDefault = 0;
CHAR aszColor[16][16] = {
"Black", "Dark Blue", "Dark Green", "Dark Cyan", "Dark Red", "Dark Magenta", "Dark Yellow", "Dark Gra
"Gray", "Blue", "Green", "Cyan", "Red", "Magenta", "Yellow", "White"

};
static ULONG aulColor[] = {

RGB(0, 0, 0), // black
RGB(0, 0, 0x7F), // dark blue
RGB(0, 0x7F, 0), // dark green
RGB(0, 0x7F, 0x7F), // dark cyan
RGB(0x7F, 0, 0), // dark red
RGB(0x7F, 0, 0x7F), // dark magenta
RGB(0x7F, 0x7F, 0), // dark yellow
RGB(0x3F, 0x3F, 0x3F), // dark gray
RGB(0x7F, 0x7F, 0x7F), // gray
RGB(0, 0, 0xFF), // blue
RGB(0, 0xFF, 0), // green
RGB(0, 0xFF, 0xFF), // cyan
RGB(0xFF, 0, 0), // red
RGB(0xFF, 0, 0xFF), // magenta
RGB(0xFF, 0xFF, 0), // yellow
RGB(0xFF, 0xFF, 0xFF), // White

};

MRESULT EXPENTRY BookDlgProc(HWND hwnd, ULONG msg, MPARAM mp1, MPARAM mp2);
MRESULT EXPENTRY TextDlgProc(HWND hwnd, ULONG msg, MPARAM mp1, MPARAM mp2);
MRESULT EXPENTRY ColorDlgProc(HWND hwnd, ULONG msg, MPARAM mp1, MPARAM mp2);
HWND InitBook(HWND hwnd);
HWND InitColor(HWND hwnd);
ULONG AddPage(HWND hwndBook, HWND hwndDlg, PSZ pszTabText);
BOOL ChangeColor(HWND hwnd, ULONG ulColor);

Figure 154 (Part 1 of 6). Mixed Mode OS/2 Platform Specific Code (DEPEND.C)

162 Open32 for OS/2 Warp

// Get greeting message default text and color, and initialize common controls
BOOL GetGMessage(PGMESSAGE pgmessage)
{
strcpy(pgmessage->szText, szDefault);
pgmessage->ulColor = RGBCONVERT(aulColor[iDefault]);

return TRUE;
}

BOOL SetGMessage(HWND hwnd, PGMESSAGE pgmessage)
{

pgmsg = pgmessage;

WinDlgBox(HWND_DESKTOP,
hwnd, /* handle of the owner */
BookDlgProc, /* dialog procedure address */
NULLHANDLE, /* location of dialog resource */
IDD_BOOK, /* resource identifier */
NULL); /* application-specific data */

return TRUE;
}

// Book Dialog procedure. */
MRESULT EXPENTRY BookDlgProc(HWND hwnd, ULONG msg, MPARAM mp1, MPARAM mp2)
{

switch (msg)
{

case WM_INITDLG:
InitBook(hwnd);
break;

case WM_COMMAND:
break;

case WM_CONTROL:
break;

default:
return WinDefDlgProc (hwnd, msg, mp1, mp2);

}

return FALSE;
}

// Text Dialog procedure.
MRESULT EXPENTRY TextDlgProc(HWND hwnd, ULONG msg, MPARAM mp1, MPARAM mp2)
{

static HWND hwndEdit;

Figure 154 (Part 2 of 6). Mixed Mode OS/2 Platform Specific Code (DEPEND.C)

Chapter 5. Mixed Mode Sample Program 163

switch (msg)
{

case WM_INITDLG:
hwndEdit = WinWindowFromID(hwnd, IDC_EDIT_TEXT);
WinSetWindowText(hwndEdit, pgmsg->szText);
break;

case WM_DESTROY:
WinQueryWindowText(hwndEdit, sizeof pgmsg->szText, pgmsg->szText);
break;

case WM_COMMAND:
switch(SHORT1FROMMP(mp1))
{

case IDC_UNDO:
WinSetWindowText(hwndEdit, pgmsg->szText);
break;

case IDC_DEFAULT:
WinSetWindowText(hwndEdit, szDefault);
break;

} /* endswitch */
break;

default:
return WinDefDlgProc(hwnd, msg, mp1, mp2);

}

return FALSE;
}

MRESULT EXPENTRY ColorDlgProc(HWND hwnd, ULONG msg, MPARAM mp1, MPARAM mp2)
{
static HWND hwndList, hwndStatic;

switch (msg)
{

case WM_INITDLG:
iSave = iCurrent;
hwndStatic = WinWindowFromID(hwnd, IDC_STATIC_COLOR);
hwndList = InitColor(hwnd);
break;

case WM_DESTROY:
{

ULONG ulColor = aulColor[iCurrent];
pgmsg->ulColor = RGBCONVERT(ulColor);
break;

}

Figure 154 (Part 3 of 6). Mixed Mode OS/2 Platform Specific Code (DEPEND.C)

164 Open32 for OS/2 Warp

case WM_COMMAND:
switch(SHORT1FROMMP(mp1))
{

case IDC_UNDO:
WinSendMsg(hwndList, LM_SELECTITEM,

MPFROMLONG(iSave), (MPARAM)TRUE);
break;

case IDC_DEFAULT:
WinSendMsg(hwndList, LM_SELECTITEM,

MPFROMLONG(iDefault), (MPARAM)TRUE);
break;

} /* endswitch */
break;

case WM_CONTROL:
if (SHORT2FROMMP(mp1) == LN_SELECT)
{

LONG lIndex = WinQueryLboxSelectedItem((HWND) mp2);
if (lIndex != LIT_NONE) {

iCurrent = lIndex;
ChangeColor(hwndStatic, aulColor[iCurrent]);

} /* endif */
} /* endif */
break;

default:
return WinDefDlgProc (hwnd, msg, mp1, mp2);

}

return FALSE;
}

// Initialize note book
HWND InitBook(HWND hwnd)
{

HWND hwndBook, hwndDlg;
RECTL rect;

// Get Note Book Window Handle.
hwndBook = WinWindowFromID(hwnd, IDC_BOOK);

Figure 154 (Part 4 of 6). Mixed Mode OS/2 Platform Specific Code (DEPEND.C)

Chapter 5. Mixed Mode Sample Program 165

// Set NoteBook background page color
WinSendMsg(hwndBook, BKM_SETNOTEBOOKCOLORS,

(MPARAM)SYSCLR_BUTTONMIDDLE,
(MPARAM)BKA_BACKGROUNDPAGECOLOR);

// Set NoteBook major tab dimension
WinSendMsg(hwndBook, BKM_SETDIMENSIONS,

MPFROM2SHORT(100, 30),
MPFROMSHORT(BKA_MAJORTAB));

// Get Client Rect Size.
WinQueryWindowRect(hwnd, &rect);

// Load Text dialog box
hwndDlg = WinLoadDlg(hwndBook,

hwndBook,
TextDlgProc,
0,
IDD_TEXT,
NULL);

// Add Text dialog page to the Notebook
AddPage(hwndBook, hwndDlg, " Text");

// Load Color dialog box
hwndDlg = WinLoadDlg(hwndBook,

hwndBook,
ColorDlgProc,
0,
IDD_COLOR,
NULL);

// Add Color dialog page to the Notebook
AddPage(hwndBook, hwndDlg, " Color");

return hwndBook;
}

HWND InitColor(HWND hwnd)
{

HWND hwndList;
ULONG i;

hwndList = WinWindowFromID(hwnd, IDC_LIST_COLOR);

// Insert color items into the list box
for (i = 0; i < 16; i++) {

WinInsertLboxItem(hwndList, i, aszColor[i]);
} /* endfor */

Figure 154 (Part 5 of 6). Mixed Mode OS/2 Platform Specific Code (DEPEND.C)

166 Open32 for OS/2 Warp

// Set color selection
WinSendMsg(hwndList, LM_SELECTITEM, (MPARAM)iCurrent, (MPARAM)TRUE);

return hwndList;
}

// Add a dialog to a Notebook
ULONG AddPage(HWND hwndBook, HWND hwndDlg, PSZ pszTabText)
{

ULONG ulPageId, rc;

// Insert New Page into NoteBook.
ulPageId = (ULONG)WinSendMsg(hwndBook, BKM_INSERTPAGE,

NULL,
MPFROM2SHORT(BKA_AUTOPAGESIZE|BKA_MAJOR,BKA_FIRST));

// Set page tab text
WinSendMsg(hwndBook, BKM_SETTABTEXT,

(MPARAM)ulPageId,
MPFROMP(pszTabText));

//* Associate window with the inserted notebook page. */
WinSendMsg(hwndBook,

BKM_SETPAGEWINDOWHWND,
MPFROMLONG(ulPageId),
MPFROMHWND(hwndDlg));

return ulPageId;
}

BOOL ChangeColor(HWND hwnd, ULONG ulNewColor)
{

RGB2 rgb;

rgb.bBlue = ulNewColor & 0x000000FF;
rgb.bGreen = (ulNewColor & 0x0000FF00) >> 8;
rgb.bRed = (ulNewColor & 0x00FF0000) >> 16;
rgb.fcOptions = 0;

WinSetPresParam(hwnd, PP_BACKGROUNDCOLOR, sizeof rgb, &rgb);

return TRUE;
}

Figure 154 (Part 6 of 6). Mixed Mode OS/2 Platform Specific Code (DEPEND.C)

5.6 Application Enhancement on OS/2

Once you have completed the migration of the OS/2 version of the mixed
mode sample program, you may wish to enhance it beyond the Win32
version using features unique to OS/2. This section describes how to
enhance the user interface concerning the color selection.

Chapter 5. Mixed Mode Sample Program 167

In the Win32 version, the colors are presented by a list box in text mode as
shown in Figure 136 on page 136. You cannot see the corresponding color
before selecting it.

A better solution is to use the OS/2 ValueSet control for color choice
presentation and selection. The ValueSet control provides an easy-to-use
WYSIWYG way of user-machine interaction. You see all the available colors
before choosing one. Win32 has no equivalent control class to OS/2.
Adding it to the OS/2 version of the mixed mode sample program is an
enhancement which cannot then be ported back to the Win32 version of the
sample.

For the mixed mode sample program porting, we found the ValueSet
programming was easier than porting the list box. You do not need to
intercept the notification messages of color selection change. You just
query the color selection at the end of the color dialog.

To do this enhancement, you need to make some changes in the resource
file (MIXMODE.RC) and the platform specific source code file (DEPEND.C).
In the MIXMODE.RC resource file, you need to replace, in the color dialog
box, the list box and the static control by a ValueSet control. If you are not
familiar with OS/2 ValueSet control resource script, you can use OS/2 dialog
editor to define a ValueSet control. Figure 155 shows the enhanced version
of the MIXMODE.RC resource file with the changes made for the color dialog
box. This enhanced resource file can be compared to the originally
migrated OS/2 resource file shown in Figure 142 on page 149.

#include <os2.h>
#include "resource.h"

// Icon
ICON IDI_ICON DISCARDABLE "mixmode.ico"
ICON IDI_DAPIE DISCARDABLE "dapie.ico"

Figure 155 (Part 1 of 3). Mixed Mode Enhanced Resources for OS/2 (MIXMODE.RC)

168 Open32 for OS/2 Warp

// Menu
MENU IDR_MENU DISCARDABLE
BEGIN

SUBMENU " File", 0xF200
BEGIN

MENUITEM " Properties", IDM_PROP
MENUITEM " Exit", IDM_EXIT

END
SUBMENU " Help", 0xF201
BEGIN

MENUITEM " About...", IDM_ABOUT
END

END

// Dialog
DLGTEMPLATE IDD_BOOK LOADONCALL MOVEABLE DISCARDABLE
BEGIN

DIALOG "Message Properties", IDD_BOOK, 12, 2, 257, 125, , FCF_SYSMENU |
FCF_TITLEBAR

BEGIN
NOTEBOOK IDC_BOOK, 0, 0, 257, 125, BKS_BACKPAGESTR |

BKS_MAJORTABTOP | BKS_ROUNDEDTABS |
BKS_SPIRALBIND | WS_GROUP

END
END

DLGTEMPLATE IDD_ABOUT LOADONCALL MOVEABLE DISCARDABLE
BEGIN

DIALOG "About Mixed Mode Sample", IDD_ABOUT, 59, 44, 233, 95,
FS_SCREENALIGN | WS_VISIBLE, FCF_SYSMENU | FCF_TITLEBAR

BEGIN
DEFPUSHBUTTON "OK", DID_OK, 84, 7, 63, 14
ICON IDI_ICON, IDI_ICON, 200, 11, 20, 16
CTEXT "DAPIE Mixed Mode Sample", IDC_STATIC, 68, 69, 98, 8,

DT_WORDBREAK | DT_MNEMONIC
ICON IDI_DAPIE, IDC_STATIC, 9, 11, 20, 16
CTEXT "(C) Copyright IBM Corp. 1996", IDC_STATIC, 59, 50,

115, 8, DT_WORDBREAK | DT_MNEMONIC
CTEXT "Developed by IBM ITSC Austin", IDC_STATIC, 52, 31,

129, 8, DT_WORDBREAK | DT_MNEMONIC
END

END

Figure 155 (Part 2 of 3). Mixed Mode Enhanced Resources for OS/2 (MIXMODE.RC)

Chapter 5. Mixed Mode Sample Program 169

DLGTEMPLATE IDD_COLOR LOADONCALL MOVEABLE DISCARDABLE
BEGIN

DIALOG "", IDD_COLOR, 3, 0, 233, 94, NOT FS_DLGBORDER
BEGIN

PUSHBUTTON " Undo", IDC_UNDO, 9, 7, 63, 14
PUSHBUTTON " Default", IDC_DEFAULT, 79, 7, 63, 14
VALUESET IDC_LIST_COLOR, 28, 32, 166, 52, VS_RGB | VS_BORDER |

WS_GROUP
CTLDATA 8, 0, 2, 8

END
END

DLGTEMPLATE IDD_TEXT LOADONCALL MOVEABLE DISCARDABLE
BEGIN

DIALOG "", IDD_TEXT, 3, 0, 233, 94, NOT FS_DLGBORDER
BEGIN

DEFPUSHBUTTON " Undo", IDC_UNDO, 9, 7, 63, 14
PUSHBUTTON " Default", IDC_DEFAULT, 85, 7, 63, 14
LTEXT "Text:", IDC_STATIC_TEXT, 9, 54, 22, 8, DT_WORDBREAK |

DT_MNEMONIC
ENTRYFIELD "", IDC_EDIT_TEXT, 11, 39, 211, 11, ES_MARGIN

END
END

Figure 155 (Part 3 of 3). Mixed Mode Enhanced Resources for OS/2 (MIXMODE.RC)

The DEPEND.C source code file needs to be modified to support the use of
the ValueSet control as follows:

• Static control is no longer needed

• Global variable iCurrent is no longer needed

• List box related messages need to be replaced by the equivalent of the
ValueSet control

• Variables iSave and iDefault change into ULONG to contain the row
number and column number of an item in the ValueSet control instead
of an index to list box items

Figure 156 on page 171 shows the enhanced version of the color page. The
source code file for the enhanced OS/2 version of the dependent part of the
mixed mode application can be found in ENHOS2 subdirectory of the OS2
subdirectory of the MIXMODE directory on the CD-ROM included in this
redbook. In Figure 157 on page 171 a copy of the enhanced version of
DEPEND.C is shown if you wish to compare it to either the Win32 version in
Figure 141 on page 144 or the migrated OS/2 version shown in Figure 154
on page 162.

170 Open32 for OS/2 Warp

Figure 156. Mixed Mode Enhanced Color Page on OS/2

//***
//* Depend.c for OS/2
//***
#define INCL_DOS
#define INCL_WIN
#include <os2.h>
#include <string.h>

#include "depend.h"
#include "resource.h"

// Macro definition
#define RGB(r,g,b) ((ULONG)(((UCHAR)(b)|((USHORT)((UCHAR)(g))<<8))|(((USHORT)(UCHAR)(r))<<16)))
#define RGBCONVERT(rgb) ((ULONG)(((rgb & 0x000000FF)<<16)|((rgb & 0x00FF0000)>>16)|(rgb & 0x0000F

Figure 157 (Part 1 of 7). Mixed Mode Enhanced Platform Specific Code for OS/2 (DEPEND.C)

Chapter 5. Mixed Mode Sample Program 171

// Private variable definition
static PGMESSAGE pgmsg;
static CHAR szDefault[] = "Hello, the World!";
static ULONG iSave = 0x00010001, iDefault = 0x00010001; // (Row,Col) = (1,1)
static ULONG aulColor[] = {

RGB(0, 0, 0), // black
RGB(0, 0, 0x7F), // dark blue
RGB(0, 0x7F, 0), // dark green
RGB(0, 0x7F, 0x7F), // dark cyan
RGB(0x7F, 0, 0), // dark red
RGB(0x7F, 0, 0x7F), // dark magenta
RGB(0x7F, 0x7F, 0), // dark yellow
RGB(0x3F, 0x3F, 0x3F), // dark gray
RGB(0x7F, 0x7F, 0x7F), // gray
RGB(0, 0, 0xFF), // blue
RGB(0, 0xFF, 0), // green
RGB(0, 0xFF, 0xFF), // cyan
RGB(0xFF, 0, 0), // red
RGB(0xFF, 0, 0xFF), // magenta
RGB(0xFF, 0xFF, 0), // yellow
RGB(0xFF, 0xFF, 0xFF), // White

};

MRESULT EXPENTRY BookDlgProc(HWND hwnd, ULONG msg, MPARAM mp1, MPARAM mp2);
MRESULT EXPENTRY TextDlgProc(HWND hwnd, ULONG msg, MPARAM mp1, MPARAM mp2);
MRESULT EXPENTRY ColorDlgProc(HWND hwnd, ULONG msg, MPARAM mp1, MPARAM mp2);
HWND InitBook(HWND hwnd);
HWND InitColor(HWND hwnd);
ULONG AddPage(HWND hwndBook, HWND hwndDlg, PSZ pszTabText);

// Get greeting message default text and color, and initialize common controls
BOOL GetGMessage(PGMESSAGE pgmessage)
{
strcpy(pgmessage->szText, szDefault);
pgmessage->ulColor = 0;

return TRUE;
}

Figure 157 (Part 2 of 7). Mixed Mode Enhanced Platform Specific Code for OS/2 (DEPEND.C)

172 Open32 for OS/2 Warp

BOOL SetGMessage(HWND hwnd, PGMESSAGE pgmessage)
{

pgmsg = pgmessage;

WinDlgBox(HWND_DESKTOP,
hwnd, /* handle of the owner */
BookDlgProc, /* dialog procedure address */
NULLHANDLE, /* location of dialog resource */
IDD_BOOK, /* resource identifier */
NULL); /* application-specific data */

return TRUE;
}

// Book Dialog procedure. */
MRESULT EXPENTRY BookDlgProc(HWND hwnd, ULONG msg, MPARAM mp1, MPARAM mp2)
{

switch (msg)
{

case WM_INITDLG:
InitBook(hwnd);
break;

case WM_COMMAND:
break;

case WM_CONTROL:
break;

default:
return WinDefDlgProc (hwnd, msg, mp1, mp2);

}

return FALSE;
}

// Text Dialog procedure.
MRESULT EXPENTRY TextDlgProc(HWND hwnd, ULONG msg, MPARAM mp1, MPARAM mp2)
{

static HWND hwndEdit;

switch (msg)
{

case WM_INITDLG:
hwndEdit = WinWindowFromID(hwnd, IDC_EDIT_TEXT);
WinSetWindowText(hwndEdit, pgmsg->szText);
break;

Figure 157 (Part 3 of 7). Mixed Mode Enhanced Platform Specific Code for OS/2 (DEPEND.C)

Chapter 5. Mixed Mode Sample Program 173

case WM_DESTROY:
WinQueryWindowText(hwndEdit, sizeof pgmsg->szText, pgmsg->szText);
break;

case WM_COMMAND:
switch(SHORT1FROMMP(mp1))
{

case IDC_UNDO:
WinSetWindowText(hwndEdit, pgmsg->szText);
break;

case IDC_DEFAULT:
WinSetWindowText(hwndEdit, szDefault);
break;

} /* endswitch */
break;

default:
return WinDefDlgProc(hwnd, msg, mp1, mp2);

}

return FALSE;
}

MRESULT EXPENTRY ColorDlgProc(HWND hwnd, ULONG msg, MPARAM mp1, MPARAM mp2)
{
static HWND hwndList;

switch (msg)
{

case WM_INITDLG:
hwndList = InitColor(hwnd);
break;

case WM_DESTROY:
{

ULONG ulColor;
iSave = (ULONG)WinSendMsg(hwndList, VM_QUERYSELECTEDITEM,

NULL, NULL);
ulColor = (ULONG)WinSendMsg(hwndList, VM_QUERYITEM,

MPFROMLONG(iSave), NULL);
pgmsg->ulColor = RGBCONVERT(ulColor);
break;

}

Figure 157 (Part 4 of 7). Mixed Mode Enhanced Platform Specific Code for OS/2 (DEPEND.C)

174 Open32 for OS/2 Warp

case WM_COMMAND:
switch(SHORT1FROMMP(mp1))
{

case IDC_UNDO:
WinSendMsg(hwndList, VM_SELECTITEM,

MPFROMLONG(iSave), NULL);
break;

case IDC_DEFAULT:
WinSendMsg(hwndList, VM_SELECTITEM,

MPFROMLONG(iDefault), NULL);
break;

} /* endswitch */
break;

default:
return WinDefDlgProc (hwnd, msg, mp1, mp2);

}

return FALSE;
}

// Initialize note book
HWND InitBook(HWND hwnd)
{

HWND hwndBook, hwndDlg;
RECTL rect;

// Get Note Book Window Handle.
hwndBook = WinWindowFromID(hwnd, IDC_BOOK);

// Set NoteBook background page color
WinSendMsg(hwndBook, BKM_SETNOTEBOOKCOLORS,

(MPARAM)SYSCLR_BUTTONMIDDLE,
(MPARAM)BKA_BACKGROUNDPAGECOLOR);

// Set NoteBook major tab dimension
WinSendMsg(hwndBook, BKM_SETDIMENSIONS,

MPFROM2SHORT(100, 30),
MPFROMSHORT(BKA_MAJORTAB));

// Get Client Rect Size.
WinQueryWindowRect(hwnd, &rect);

// Load Text dialog box
hwndDlg = WinLoadDlg(hwndBook,

hwndBook,
TextDlgProc,
0,
IDD_TEXT,
NULL);

Figure 157 (Part 5 of 7). Mixed Mode Enhanced Platform Specific Code for OS/2 (DEPEND.C)

Chapter 5. Mixed Mode Sample Program 175

// Add Text dialog page to the Notebook
AddPage(hwndBook, hwndDlg, " Text");

// Load Color dialog box
hwndDlg = WinLoadDlg(hwndBook,

hwndBook,
ColorDlgProc,
0,
IDD_COLOR,
NULL);

// Add Color dialog page to the Notebook
AddPage(hwndBook, hwndDlg, " Color");

return hwndBook;
}

HWND InitColor(HWND hwnd)
{

HWND hwndList;
USHORT usRow, usCol;
ULONG i;

hwndList = WinWindowFromID(hwnd, IDC_LIST_COLOR);
// Set the color value for each item in each row and column. */
for (usRow = 1, i = 0; usRow < 3; usRow++) {

for (usCol = 1; usCol < 9; usCol++) {
WinSendMsg(hwndList, /* Value set window handle */

VM_SETITEM, /* Message for setting items */
MPFROM2SHORT(usRow,usCol), /* Set item in row, column */
MPFROMLONG(aulColor[i])); /* to the color red. */

i++;
} /* endfor */

} /* endfor */

// Set selection
WinSendMsg(hwndList, VM_SELECTITEM, MPFROMLONG(iSave), NULL);

return hwndList;
}

Figure 157 (Part 6 of 7). Mixed Mode Enhanced Platform Specific Code for OS/2 (DEPEND.C)

176 Open32 for OS/2 Warp

// Add a dialog to a Notebook
ULONG AddPage(HWND hwndBook, HWND hwndDlg, PSZ pszTabText)
{

ULONG ulPageId, rc;

// Insert New Page into NoteBook.
ulPageId = (ULONG)WinSendMsg(hwndBook, BKM_INSERTPAGE,

NULL,
MPFROM2SHORT(BKA_AUTOPAGESIZE|BKA_MAJOR,BKA_FIRST));

// Set page tab text
WinSendMsg(hwndBook, BKM_SETTABTEXT,

(MPARAM)ulPageId,
MPFROMP(pszTabText));

//* Associate window with the inserted notebook page. */
WinSendMsg(hwndBook,

BKM_SETPAGEWINDOWHWND,
MPFROMLONG(ulPageId),
MPFROMHWND(hwndDlg));

return ulPageId;
}

Figure 157 (Part 7 of 7). Mixed Mode Enhanced Platform Specific Code for OS/2 (DEPEND.C)

Chapter 5. Mixed Mode Sample Program 177

178 Open32 for OS/2 Warp

Chapter 6. Named Pipe Sample Program

In Chapter 5, “Mixed Mode Sample Program” on page 133 you learned a
technique to resolve the problem with unsupported window classes. This
technique works but we lose the single source code file for our program. As
a result, extra effort is required to migrate the Win32 application to the OS/2
environment. Also the maintenance of the platform dependent code on both
OS/2 and Win32 platform will mean extra work.

This chapter will discuss a technique which allows for the use of Win32 APIs
not supported by Open32. Using this technique, we are able to compile and
execute the same common source file on both the OS/2 and Windows
systems without making changes to the source file. This technique uses an
interface layer that handles the unsupported Win32 API calls and uses
equivalent OS/2 functions to perform the requests from the common source
code application.

In this chapter we discuss the development of the named pipe interface
layer along with a sample program that uses the Win32 named pipe API call
which the interface layer supports. Also included in this chapter are
discussions on:

• How to develop both named pipe server and client applications

• How to develop multiple thread applications

• How to use event semaphores for inter-thread communications

6.1 Application's Overview

The named pipe sample program is made up of two applications: one is a
named pipe server application and the other is a named pipe client
application. They communicate to each other through a named pipe on a
local workstation or on a LAN.

6.1.1 Named Pipe Server Application's Overview
In the named pipe server application, you use the Open option of the File
pull-down menu, as shown in Figure 158 on page 180, to create a named
pipe instance.

 Copyright IBM Corp. 1996 179

Figure 158. Named Pipe Server: File Pull-Down

Each named pipe instance is visually represented by an MDI child window,
as shown in Figure 159.

Figure 159. Named Pipe Server: Named Pipe Instance Window

Once the named pipe instance is connected, you can exchange data with
the client through the named pipe. This can be done by using the Send
option of the File pull-down menu to open a dialog box, type the message

180 Open32 for OS/2 Warp

text and send it to the connected client by selecting the OK button, as
shown in Figure 160 on page 181.

Figure 160. Named Pipe Server: Send Message Dialog

You receive a message by using the Receive option of the File pull-down
menu. All the messages sent or received will be displayed in the named
pipe instance's window.

When you finish the dialog, you can use the Close option using the File
pull-down menu to close the named pipe instance. The corresponding
named pipe instance's window will be closed and a close message will be
sent to the client to alert it.

The named pipe server application is similar to the MDI sample and used
the same logic to manage MDI child windows. In the named pipe sample
these child windows are referred to as named pipe instance's windows.
You can use the options of the Window pull-down menu to manipulate these
windows in the same way as with the MDI sample program described in 4.2,
“User's Interface” on page 105.

Communication errors will be logged in the named pipe server application.
For example, if the client closes the named pipe instance before the server
does this, a pipe broken message will be logged and the named pipe
instance will be closed as well as its window.

6.1.2 Named Pipe Client Application's Overview
In the named pipe client application, you use the Open option of the File
pull-down menu, as shown in Figure 161 on page 182, to open a named
pipe instance.

Chapter 6. Named Pipe Sample Program 181

Figure 161. Named Pipe Client: File Pull-Down

Once the named pipe instance is connected, data is exchanged with the
named pipe server through a named pipe. This is accomplished using the
Send option of the File pull-down menu to present the Send Message
window where you type the message text before selecting the OK button to
send the message to the server. Figure 162 shows the Send Message
window of the named pipe client sample program.

Figure 162. Named Pipe Client: Send Message Dialog

The Receive option of the File pull-down menu can be used to receive
messages from the server. All the messages sent to or received from the

182 Open32 for OS/2 Warp

server are displayed in the main window of the named pipe client
application.

When you finish the dialog with the server, you can use the Close option of
the File pull-down menu to close the named pipe instance. Like the server,
the client sends a close message to the server.

Communication errors are handled in the named pipe client application
similar to what is done in the the named pipe server application. If the
server closes the named pipe instance before the client does, a pipe broken
message will be displayed in the main window.

6.2 Source Files

Table 6 lists all the source files used by the named pipe sample program.
You will find these files on the CD-ROM supplied in this redbook in the
NPIPE directory. The NPIPE has three subdirectories: SERVER, CLIENT

and OS2NP. The SERVER subdirectory contains the named pipe server
application code while the CLIENT subdirectory contains the named pipe
client application code. The OS2NP subdirectory contains the function
library for OS/2. Both SERVER and CLIENT subdirectories contain an OS2
and WIN32 subdirectory. The OS2 and WIN32 subdirectories contain,
respectively, platform specific files for OS/2 and Windows while the
SERVER and CLIENT subdirectories contain the files common to both OS/2

and Windows.

Table 6 (Page 1 of 2). Named Pipe Sample Program Source Files

LOCATION NAME DESCRIPTION

NPIPE SERVER SERVER.C Server common source code file

NPIPE SERVER RESOURCE.H Server common resource header
file

NPIPE SERVER OS2 MAIN.C Server OS/2 specific source file

NPIPE SERVER OS2 and
NPIPE SERVER WIN32

SERVER.RC Server OS/2 and Windows
specific resource file

NPIPE SERVER OS2 MAKEFILE Server OS/2 specific makefile

NPIPE SERVER WIN32 SERVER.MAK Server Windows specific makefile

NPIPE SERVER OS2 SERVER.DEF Server OS/2 specific module
definition file

NPIPE SERVER OS2 and
NPIPE SERVER WIN32

SERVER.ICO Server OS/2 and Windows
specific icon resource file

NPIPE CLIENT OS2 CLIENT.H OS/2 specific header file

NPIPE CLIENT CLIENT.C Client common source code file

Chapter 6. Named Pipe Sample Program 183

Table 6 (Page 2 of 2). Named Pipe Sample Program Source Files

LOCATION NAME DESCRIPTION

NPIPE CLIENT RESOURCE.H Client common resource header
file

NPIPE CLIENT OS2 MAIN.C Client OS/2 specific source file

NPIPE CLIENT OS2 and
NPIPE CLIENT WIN32

CLIENT.RC Client OS/2 and Windows specific
resource file

NPIPE CLIENT OS2 MAKEFILE Client Windows specific makefile

NPIPE CLIENT WIN32 CLIENT.MAK Client Windows specific makefile

NPIPE CLIENT OS2 CLEINT.DEF Client OS/2 specific module
definition file

NPIPE CLIENT OS2 and
NPIPE CLIENT WIN32

CLIENT.ICO Client OS/2 and Windows specific
icon resource file

NPIPE OS2NP NPIPE.H Library OS/2 specific source
header file

NPIPE OS2NP NPIPE.C Library OS/2 specific source code
file

NPIPE OS2NP MAKEFILE Library OS/2 specific makefile

6.3 Application Design

Named pipes are a means of interprocess communication where
applications use named pipes to exchange data. The data or service
provider applications are called named pipe server applications while the
data or service consumer applications are called named pipe client
applications. Inside each application, there is a user interface component
and a data communication component the later which uses named pipes.
The user interface component gets data requests (send or receive
messages) from the end user and forwards these requests to the data
communication component. The data communications component then
sends or receives the data request through the named pipe. Figure 163 on
page 185 shows the architecture of the named pipe server and client
application.

184 Open32 for OS/2 Warp

Figure 163. Named Pipe Sample Program Architecture

There are two design points which are implemented in both the named pipe
server and client programs. The first is the user interface component is part
of the application main thread while the named pipe component is executed
in secondary threads called server thread and client thread respectively for
the named pipe server and client programs. The reason for this is that
actual sending or receiving of data over the named pipe may take a long
time hence reducing the responsiveness of the user interface if there was
only one thread. However, this separation means that the interthread
communication needs to be properly coordinated which leads to the second
design consideration.

The second design point is the main thread uses an event semaphore to
signal the data communications thread. When the user interface component
needs to request data or service of the data communications thread it will
block the data communications thread by setting the event semaphore.
After setting the event semaphore the user interface component places a
request in a shared data structure. The user interface component then

Chapter 6. Named Pipe Sample Program 185

clears the event semaphore to unblock the named pipe thread. Once
unblocked, the named pipe thread retrieves the data or service request from
the shared data structure and performs the request.

The name of the named pipe for the sample application we selected is
Open32. This has been hard-coded into both the server and client programs.

6.4 Coding

The application development starts on the Windows NT platform using
Microsoft Visual C++ Version 4.0. Windows 95 does not support Win32
named pipe APIs. Named pipe server applications cannot be developed on
Windows 95 machines. However you can still develop named pipe client
applications on Windows 95 and run them to access remote named pipes
through LANs.

6.4.1 Server Application Coding
The named pipe server application design is based on the MDI sample
program. With this design there is always an MDI frame window, and an
MDI client window with one or more MDI child windows representing a
named pipe instance. In addition, the named pipe server application uses:

• MDI child windows to display messages sent to or received from named
pipe clients

• Secondary threads to communicate with the named pipe clients

• Event semaphores to coordinate the MDI child windows and its named
pipe server thread

The common source (SERVER.C) for the server program can be found on the
CD-ROM in this redbook in the SERVER subdirectory of the NPIPE
directory. The resource file (SERVER.RC) can be found in the WIN32
subdirectory of the SERVER directory on the CD-ROM. You may wish to
reference these files to see how the application design that follows was
actually coded in the program.

In the same way as the MDI sample program, the named pipe server
application starts by creating the MDI frame window and the MDI client
window in the main thread. Then it goes into the window message loop
looking for input from the user.

Upon receipt of the Open command from the File pull-down menu, the MDI
frame window creates an MDI child window. This new MDI child window
does the following things at initialization time:

• Create a list box in its client area

186 Open32 for OS/2 Warp

• Create an event semaphore using CreateEvent()

• Create a secondary thread using CreateThread()

• Allocate a data structure of type NPCLIENT

The event semaphore is initialized in the non-signaled state. This will block
all threads waiting on it.

The new secondary thread, called named pipe server thread, creates in turn
an instance of the named pipe OPEN32 using CreateNamedPipe(). If
successful, it notifies its MDI child window and then connects to it waiting
for a named pipe client to open it. After the named pipe is connected, the
server thread blocks itself on the event semaphore by calling
WaitForSingleObject(). Notice there is an MDI child window, an event
semaphore and a server thread created for each named pipe instance. The
handles of the event semaphore and of the named pipe instance are stored
in the NPCLIENT data structure and the address of the data structure is
recorded in this MDI child window's data area. The list box will be used to
store all the messages sent to or received from the named pipe instance.

Upon receipt of the Send command from the File pull-down menu, the main
thread opens a dialog box to prompt the user to enter the message to be
sent and puts the message text into the NPCLIENT data structure of the
currently active MDI child window. It signals the event semaphore of which
the handle is stored in the data structure. This unblocks the corresponding
server thread. The unblocked server thread retrieves the message text from
the NPCLIENT data structure, then writes it to the named pipe. It notifies its
MDI child window by posting a message, then blocks itself on the event
semaphore again.

Upon receipt of the Receive command from the File pull-down menu, the
main thread puts the request into the NPCLIENT data structure of the
currently active MDI child window then signals the related event semaphore
to unblock the corresponding server thread. The unblocked server thread
reads the named pipe, writes the message received to the NPCLIENT data
structure, notifies the main window by posting a message then blocks itself
on the event semaphore again.

Upon receipt of the Close command from the File pull-down menu, the main
thread puts the request into the NPCLIENT data structure of the currently
active MDI child window and signals the related event semaphore to
unblock the corresponding server thread. Finally, it closes the MDI child
window in question. The unblocked server thread closes the named pipe
and the event semaphore, deallocates the NPCLIENT data structure and
returns. This ends the thread.

Chapter 6. Named Pipe Sample Program 187

6.4.2 Client Application Coding
The named pipe client program borrows a lot of its logic from the server
program. It uses multiple threads to separate the user interface and data
communications code. Also, an event semaphore mechanism is used to
manage the interthread communication. However, the code is simpler since
the client program only has one data communicate section for one named
pipe instance.

The common source (CLIENT.C) for the server program can be found on the
CD-ROM in this redbook in the CLIENT subdirectory of the NPIPE
directory. The resource file (CLIENT.RC) can be found in the WIN32
subdirectory of the SERVER directory on the CD-ROM. You may wish to
reference these files to see how the application design that follows was
actually coded in the program.

The WinMain() function is like a normal Windows application. It registers
the main application window class, creates the main window then enters
into the window message loop. At initialization the main window creates an
event semaphore for later use for the interthread communication, and a list
box to log the messages sent to, or received from, the named pipe as well
as the error messages.

Upon receipt of the Open command from the File pull-down menu, the main
thread creates a secondary thread called the named pipe client thread.
This secondary thread opens the named pipe OPEN32, then blocks itself on
the event semaphore created at initialization.

Upon receipt of the Send command from the File pull-down menu, the main
thread opens a dialog box to prompt the user to type a message to send. It
puts the message text into the NPCLIENT communication data structure then
signals the event semaphore. This unblocks the client thread. The
unblocked client thread retrieves the message text from the NPCLIENT data
structure, then writes it to the named pipe. It notifies the main window by
posting a message, then blocks itself on the event semaphore again.

Upon receipt of the Receive command from the File pull-down menu, the
main thread puts the request into the NPCLIENT communication data
structure, then signals the event semaphore to unblock the client thread.
The unblocked client thread reads the named pipe, writes the message
received into the NPCLIENT data structure, notifies the main window by
posting a message, then blocks itself on the event semaphore again.

Upon receipt of the Close command from the File pull-down menu, the main
thread puts the request into the NPCLIENT communication data structure
and signals the event semaphore to unblock the client thread. The

188 Open32 for OS/2 Warp

unblocked client thread closes the named pipe and returns. This ends the
thread.

6.5 Migration

Both the named pipe server and client application use window classes not
supported by Open32. Simply follow the migration steps described in
Chapter 3, “Howdy, World!” on page 79 to convert the resources.

However, both of them use Win32 named pipe APIs which are not currently
supported by Open32, but have OS/2 equivalent APIs. They would not be
compiled on OS/2 since Open32 header files do not contain the required
function prototypes and Open32 libraries do not contain these function
references. One solution to this problem is to extract the platform
dependent code and group it in a separate source code file, one version for
Win32 and another for OS/2. This technique was described in Chapter 5,
“Mixed Mode Sample Program” on page 133 to resolve the problem with
unsupported window classes. One evident drawback with this technique is
that it reduces the common source code base size and complicates the
source code maintenance task because of the two versions of the platform
dependent source code.

By providing the header file OS2NP.H which defines the Win32 APIs that are
being implemented with the technique described in this chapter along with
the library file OS2NP.LIB for the function prototypes defined in the header
file OS2NP.H the Win32 version of the source code remains intact when
migrated to OS/2. You perform the same steps as described in Chapter 3,
“Howdy, World!” on page 79 for migrating the source code.

You with need to make a small changes to the MAKEFILE file as shown in
Figure 164 on page 190 for the server and Figure 165 on page 190 for the
client. Since the named pipe server and client applications are multiple
thread applications, the /Gm+ compile option is added in the MAKEFILE
files. Also the OS2NP.LIB library is added for linking the programs.

To create the OS2NP.LIB library, we perform the following steps:

• Identify the unsupported APIs used by the applications.

• Prototype the API's functions in a header file.

• Code the functions using OS/2 equivalent functions.

• Put the functions into an object library.

• Link the applications with this library.

Chapter 6. Named Pipe Sample Program 189

proj = server
cflags = /C /DOS2 /Gm+ /I..\os2np /N3 /Ss /Ti /Wgen /Wpro
lflags = /CO /O:$(proj) /PM:PM
objlist = $(proj).obj main.obj

.c.obj:
icc $(cflags) $*.c

$(proj).exe : $(objlist) $*.res
ilink $(lflags) $(objlist) pmwinx.lib ..\os2np\npipe.lib
rc $*.res $*.exe

$(proj).res: $*.rc
rc /r /dOS2 $*.rc

Figure 164. Named Pipe Server: MAKEFILE

proj = client
cflags = /C /DOS2 /Gm+ /I..\os2np /N3 /Ss /Ti /Wgen /Wpro
lflags = /CO /O:$(proj) /PM:PM
objlist = $(proj).obj main.obj

.c.obj:
icc $(cflags) $*.c

$(proj).exe : $(objlist) $*.res
ilink $(lflags) $(objlist) pmwinx.lib ..\os2np\npipe.lib
rc $*.res $*.exe

$(proj).res: $*.rc $*.h
rc /r /dOS2 $*.rc

Figure 165. Named Pipe Client: MAKEFILE

6.5.1 Unsupported API Function Classification
The unsupported named pipe API functions can be classified into two
categories.

The functions in the first category are not defined in Open32. They are:

• CreateNamedPipe()

• ConnectNamedPipe()

• DisconnectNamedPipe()

Functions in the second category are defined in Open32 but do not support
named pipes. They are:

• CreateFile()

190 Open32 for OS/2 Warp

• ReadFile()

• WriteFile()

• CloseHandle()

In the first case, we need to provide the function prototype and code while in
the second case, we have to find a solution to enhance the existing
functions to support the named pipe.

The technique we have chosen to handle both of these cases is to rename
these functions in the NPIPE.H prototype file and to code the renamed
functions in the NPIPE.C file using OS/2 equivalent API functions. One
restriction imposed by this technique is that you cannot call these functions
to access normal files and named pipes from the same application source
code file. Instead you should separate them into different source code files
and only include the NPIPE.H header file in the source code files which
contain function calls for named pipe access. In our sample we are not
calling any of these Open32 functions to perform tasks other than working
with the named pipe, so this implementation will work.

6.5.2 Unsupported API Function Prototyping
The function prototyping task consists of:

• Defining the prototypes of the functions of the first category

The prototypes of these functions can be found in the Win32 API function
header files. You will want to model the function you are going to
implement after these header file definitions and place them into the
NPIPE.H header file.

• Renaming the functions of the second category

The new name of these functions must not exist on Win32 nor on OS/2.
Their prototypes must use the data and function types defined in Open32
since they will be called by Open32 applications. For the sample
program presented in this redbook we did not rename these functions
since the application only works with these functions for requests for
named pipe activities. Thus, the function names could be used and all
requests redirected to the functions provided by the API extensions
implemented in the interface routine.

• Defining the data types referenced by the function prototypes

Some of the data types may already exist in Open32. Thus you will
need to define those data types that are absent in Open32.

• Defining the macros referenced by the function prototypes

Chapter 6. Named Pipe Sample Program 191

Some of the macros may already exist in Open32. As with the data
types you will only need to define those macros that are absent in
Open32.

6.5.3 Unsupported API Function Coding
The implementation steps are the same for all the functions:

• Translate the input argument values of the Win32 API's functions into the
corresponding OS/2 functions.

• Call the OS/2 equivalent function.

• Translate the return value of the OS/2 API's functions into the
corresponding Win32 functions.

• Translate the output argument values of the OS/2 API's functions into
the corresponding Win32 functions.

• If an error occurs, translate the OS/2 error code into a Win32 error code
and store it to the thread making the call by calling SetLastError().

The NPIPE.C source code file contains only native OS/2 code. Because of
the similar names between Open32 and native OS/2 function calls it cannot
include the header file for Open32 (OS2WIN.H). Consequently, the definition
of the macros and data types referenced by the Win32 API functions being
implemented in the interface routine need to be duplicated at the beginning
of the NPIPE.C source code file. Similarly, the SetLastError() function (a
Win32 function whose prototype is defined in the os2win.h header file) calls
the NPIPE.C source code file, and needs to be prototyped in the source file.

After the coding is finished, we put the NPIPE.OBJ object file into the
NPIPE.LIB static function library. It will be included with the server and
client sample programs when the OS/2 version of the application is
link-edited.

proj = npipe
cflags = /C /Gm+ /N3 /Ss /Ti /Wgen /Wpro

.c.obj:
icc $(cflags) $*.c

$(proj).lib : $*.obj
ilib $*.lib -+$*.obj;

Figure 166. Named Pipe Library MAKEFILE

192 Open32 for OS/2 Warp

6.6 Run the Applications

You run the named pipe server and client applications on a local machine
or on a LAN. If running the application on a local machine it must be an
OS/2 or Windows NT machine since Windows 95 does not support Win32
named pipe APIs. When running the application in a LAN environment you
can run the named pipe server application on Windows NT or OS/2. The
named pipe client applications can be run on Windows 95, Windows NT and
OS/2. When running the application on a LAN, both the client and server
machines must have installed networking support for remote named pipe
support, for example OS/2 LAN Server for server machines and OS/2 LAN
Requester for client machines.

Following are the steps to run the named pipe server and client
applications:

1. Start the named pipe server application.

2. Go to the File pull-down menu and select the Open option to create a
named pipe instance. Now the named pipe server application is waiting
for the connection from a named pipe client.

3. Start the named pipe client application with the name of the server
where the named pipe server application is running. If you do not give
the server name, the named pipe is assumed to be local.

4. Go to the File pull-down menu and select the Open option to open the
named pipe instance.

5. Once the connection is established between the named pipe server and
client, you can use the Send and Receive options of the File pull-down
menu, on both the server and client side, to exchange messages
between them.

6. Repeat steps 2, 3 and 4 for each additional named pipe connection you
wish to establish.

7. When you are finished exchanging messages use the Close option of the
File pull-down on both the server and client, to close the connection.

Chapter 6. Named Pipe Sample Program 193

194 Open32 for OS/2 Warp

Chapter 7. Tree View Control Sample Program

With Windows 95, Microsoft introduced a new set of controls to enhance the
appearance of the user interface. These new window classes, called
common controls, include:

• Toolbars
• Status Windows
• Property Sheets
• Tab Controls
• List Views
• Tree Views
• Rich Edit Controls
• Trackbars
• Progress Controls
• Header Controls
• Up-Down Controls
• Animation Controls
• Hot-Key Controls

While these new window classes give the Windows programmer greater
power and flexibility in designing a user interface, they make applications
more difficult to migrate to OS/2. Specifically, none of the above window
classes are supported by Developer API Extensions, so applications which
use them require extra work to migrate.

In this chapter, we will investigate an alternative to mixed mode
programming to enable these common controls under OS/2 (See Chapter 5,
“Mixed Mode Sample Program” on page 133 for more information on mixed
mode programming). We have chosen to call the technique discussed in
this chapter a translation control. It is intended primarily for migrating
existing Win32 applications to OS/2 because it does not require any
significant changes to the program source code (one line of code must be
changed.) Our goal in developing this technique was to minimize the
amount of source code required to migrate a Win32 application to OS/2.
While the technique could also be used in developing new cross-platform
applications, mixed mode programming may be a better solution.

To demonstrate the translation control technique, we have selected the
Win32 tree view common control to implement.

In the first part of the chapter, we will discuss the translation technique and
use it to implement the tree view control under OS/2. In the second part,
we will use the tree view control to migrate TVTest, a program which

 Copyright IBM Corp. 1996 195

demonstrates most of the features of the tree view control, to OS/2. TVTest
is show in Figure 167 on page 196 running under Windows 95. In the final
part of the chapter, we will explain how to implement your own Open32
common controls using the translation technique.

Figure 167. Tree View Control under Windows 95

7.1 How the OS/2 Tree View Control Works

The way a Win32 program interacts with the tree view control is visualized
in Figure 168 on page 197. The application sends messages directly to the
control, and the control sends notification messages directly to the
application.

The approach used in this chapter to allow an Open32 application to use a
common control under OS/2 is visualized in Figure 169 on page 197.

196 Open32 for OS/2 Warp

Figure 168. Tree View Control under Windows

Figure 169. Tree View Translation Control under OS/2

Chapter 7. Tree View Control Sample Program 197

The Win32 application interacts with the Open32 tree view control just as it
interacts with the tree view under Windows. The Open32 tree view control,
however, acts as a translator between the application and an OS/2 container
control. The container is a standard OS/2 window class which provides,
among other things, a tree view of data. Every message the Win32
application sends to the Open32 tree view is translated into an equivalent
container message and sent to the container. Notification messages from
the container are translated and sent to the Win32 application.

7.1.1 Translation Technique Advantages
The translation technique has the following advantages over mixed mode
programming:

• The original program code does not change because all of the code for
handling the differences between the tree view and container is isolated
in the translation control. This makes the technique an ideal solution for
existing programs which use common controls. By adding translation
controls for any common controls the application uses, the original
program source can be left unchanged.

• The Open32 translation control can be packaged as a DLL and shared
by several running applications. This reduces memory requirements if
more than one application uses the control.

• Experienced Windows programmers do not need to learn OS/2
programming to use the control. (A programmer familiar with both
Windows and OS/2 is needed, however, to write the control.)

• Once written the first time, the control can be reused in the future
without modification. It can be copied from one project to another or
can be sold to other companies and developers.

7.1.2 How the OS/2 Tree View Control is Written
The key to making the translation control work is writing an effective
translation window class. This custom window class will allow the Win32
application to use an OS/2 control through the standard Win32 common
controls interface.

To build a translation window class, the programmer must deal with Win32
and OS/2 APIs, messages, and data structures. The translation window
class must call both OS/2 and Win32 functions. Thus, the translation window
class source code must include both <os2.h> and <os2win.h>.

The need to include both header files causes a problem. The header files
os2.h and os2win.h both define structures and messages with the same
name (but different meanings or values). Having these duplicate definitions

198 Open32 for OS/2 Warp

in the source code will cause compile-time errors. A translation window
class eliminates the compiler errors by separating the source code in two
source code files. One file, called the Open32 source code, will be compiled
with the <os2win.h> header file. The other file, called the OS/2 source
code, will be compiled with the <os2.h> header file.

However, there are times when the OS/2 code needs to call an Open32
function and vice versa. For these instances, you must create a function
which calls the Open32 function for the OS/2 code. An example of this in
the Open32 tree view control is Open32SendMsg(), which calls the Win32
function SendMessage().

7.1.2.1 Open32 Source Code
The Open32 source code for the tree view control is contained in the file
OPEN32TV.C, which can be found on the CD in the directory
TVTEST OPEN32TV. The file contains four procedures, as described in

Table 7.

Table 7. Procedures Defined in OPEN32TV.C

Function Purpose

void InitTreeView(HINSTANCE hInst) Registers the WC_TREEVIEW window class
using the Open32 API RegisterClass()

LRESULT CALLBACK
TVOpen32WndProc(HWND hwnd, UINT
message, WPARAM wParam, LPARAM lParam)

Open32 window procedure for the
WC_TREEVIEW window class

LONG Open32SendMsg(HWND hwnd, ULONG
msg, ULONG wp, ULONG lp)

Sends a message using the Open32 API
SendMessage()

ULONG Open32GetLong(HWND hwnd, ULONG
index)

Retrieves a window long using the Open32 API
GetWindowLong()

The first function, InitTreeView(), is similar in purpose to the Win32 function
InitCommonControls(). While it would make sense to name the function
InitCommonControls(), the Win32 function takes no parameters, whereas
InitTreeView() requires an instance handle as a parameter. The instance
handle must be passed to RegisterClass(). To reduce confusion, another
name has been selected. Note, however, that either decision will mandate a
small change to the Win32 program's source code. See 7.2.2, “Changes to
the Source Code” on page 214 for more information on this change. This is
the only change which is required for all window classes which are
implemented using the method outlined in this chapter, although the tree
view example will also require a few other small changes.

Chapter 7. Tree View Control Sample Program 199

The second function, TVOpen32WndProc(), is an Open32 window procedure
which handles the messages sent to the translation window by the Open32
application. It calls MsgToTV(), a function defined in OS2TV.C, which
performs message translation. No message translation occurs in
TVOpen32WndProc.

The third and fourth functions directly call the Open32 API they are
associated with. Open32SendMsg() calls SendMessage, and
Open32GetLong() calls GetWindowLong(). These two functions are called by
functions in OS2TV.C.

7.1.2.2 OS/2 Source Code
The OS/2 source code for the tree view control is contained in the file
OS2TV.C, which can be found on the CD in \TVTEST\OPEN32TV. The file
defines five procedures, as described in Table 8.

Table 8. Procedures Defined in OS2TV.C

Procedure Purpose

LONG MsgToTV(HWND hwnd, ULONG msg,
LONG wp, LONG lp, PTVWND DATA
pTVWndData)

Processes messages from the parent window
by translating them and sending equivalent
container control messages.

MRESULT EXPENTRY TVOS2WndProc(HWND
hwnd, ULONG msg, MPARAM mp1, MPARAM
mp2)

OS/2 window procedure which is registered in
MsgToTV during the processing of
WM_CREATE. This procedure receives
messages from the container control. They
are translated and sent to the Open32 parent
window.

void UpdateTreeImages (HWND hwnd,
PRECORDCORE rec, PTVWNDDATA
pTVWndData, PCNRINFO pCnrInfo)

Utility function called by MsgToTV(). This
function updates all the images in the
container after a new image list has been
selected.

void UpdateImages (PRECORDCORE rec,
PTVWNDDATA pTVWndData, PCNRINFO
pCnrInfo)

Utility function called by MsgToTV() and
UpdateTreeImages(). This function updates
the image data for one item in the container.

ULONG CountRecords (HWND hwnd,
PRECORDCORE rec, PCNRINFO pCnrInfo)

Recursively counts the records in the
container. This function is called by
MsgToTV().

The MsgToTV() and TVOS2WndProc() functions contain essentially all of the
translation code. MsgToTV() receives all of the messages sent by the Win32
application to the Open32 tree view control. The function processes each
message individually, translating it into its OS/2 container equivalent. See
7.1.4.1, “TVM_INSERTITEM Message” on page 205 for more information on
how MsgToTV() translates messages.

200 Open32 for OS/2 Warp

TVOS2WndProc() receives messages directly from the container. It
translates OS/2 WM_CONTROL messages into equivalent Win32
WM_NOTIFY messages. See 7.1.4.2, “CN_CONTEXTMENU Message” on
page 208 for more information on how the TVOS2WndProc() receives
messages from the container.

The utility functions UpdateTreeImage(), UpdateImages(), and
CountRecords() perform various actions on the container control.
UpdateTreeImage() and UpdateImage() provide code to simplify the handling
of image lists, which are not used by the container control. CountRecords()
counts all of the records in the container. Although the OS/2 container has
a message to return the number of items currently in it, the container only
returns the number of root level items. The Win32 treeview control API
returns the total number of items in the item count message. This action is
duplicated by CountRecords().

7.1.3 Overview of the Translation Process
As stated before, the translation process is the key to the entire method.
Two functions, both defined in OS2TV.C, contain essentially all of the
translation code. MsgToTV() manages the messages sent to the translation
control by the Win32 program, and TVOS2WndProc() manages messages
sent to the translation control by the container control.

For this discussion, we will differentiate between two different kinds of
messages that are processed by the translation control.

• Command messages are sent by the Win32 parent window to the
translation control to either retrieve information on one of the tree items
or to request some action of the translation control. These messages
are translated into OS/2 container control messages and sent to the
translation control's container child window.

• Notification messages are sent by the container to the translation
control to inform it of a user's actions. These messages are translated
into Win32 notification messages and sent to the Win32 parent window.

Before going into the details of how the tree view translation control
processes messages, let's look at the general flow of a command message
and a notification message processed by the tree view translation control.
Detailed information on how these messages are handled will be covered in
7.1.4, “Details on How the Tree View Control Works” on page 205.

7.1.3.1 Command Message Flow Example
To show the flow of a command message through the tree view translation
control, we will use the Win32 TVM_INSERTITEM command message. The
TVM_INSERTITEM message instructs the tree view to add a new item to its

Chapter 7. Tree View Control Sample Program 201

contents. An outline of the flow of this message through the tree view
translation control is shown in Figure 170 on page 202.

Figure 170. Command Messages Translated for the Tree View Control

The message begins when the Open32 application calls
TreeView_InsertItem(). This macro sends the tree view a TVM_INSERTITEM

202 Open32 for OS/2 Warp

message, passing as the lParam a pointer to a TV_INSERTSTRUCT. The
translation control receives the message and creates equivalent OS/2
RECORDCORE and RECORDINSERT structures. It then sends the OS/2
container control an CM_INSERTRECORD message.

The container processes the CM_INSERTRECORD message and returns the
number of records in the container. If the return is not zero, the record was
properly inserted and the translation window will return a handle to the
inserted item. If the return is zero, an error occurred and the translation
window will return FALSE.

Notice that the return types of the container and the Win32 TreeView APIs
are different. Both return FALSE or zero when an error occurs, but they
return different positive values to signal success. The translation control
must handle these differences and convert them appropriately. The
specifics of this conversion are covered in 7.1.4, “Details on How the Tree
View Control Works” on page 205.

7.1.3.2 Notification Message Flow Example
When the container sends a notification message, the tree view translation
control must also translate it into an equivalent tree view message to send
to the parent window. To show the flow of a notification message through
the tree view translation control, we will use the OS/2 control
WM_CONTROL message CN_CONTEXTMENU. See Figure 171 on page 204
for a graphical representation of how the Open32 tree view control does
this.

Chapter 7. Tree View Control Sample Program 203

Figure 171. Notification Messages Translated by the Open32 Tree View Control

When the container sends the translation control a WM_CONTROL message,
such as CN_CONTEXTMENU, OS/2 calls TVOS2WndProc() to process the
message. The window procedure translates the CN_CONTEXTMENU into a
Win32 NM_RCLICK notification message. It then sends the NM_RCLICK

204 Open32 for OS/2 Warp

message as a WM_NOTIFY message to the Win32 application, which
responds appropriately.

7.1.4 Details on How the Tree View Control Works
In this section we will take a close look at how the tree view translation
control works. First, we will step through the code which handles the
TVM_INSERTITEM message from an Win32 application. Then we will see
exactly how it translates the CN_CONTEXTMENU message from the
container.

7.1.4.1 TVM_INSERTITEM Message
The message begins when the Win32 application creates and initializes a
TV_INSERTSTRUCT for the item to be added. It then calls
TreeView_InsertItem() to add the item to the tree view. This macro is not
supported by Open32, so we must provide a definition of it, as shown in
Figure 172. The macro is defined in OS2WINTV.H, which is on the CD in
\TVTEST\OPEN32TV.

#define TreeView_InsertItem(hwnd, lpis) \
(HTREEITEM)SendMessage((hwnd), TVM_INSERTITEM, 0, (LPARAM)(LPTV_INSERTSTRUCT)(lpis)

Figure 172. OS2WINTV.H: Definition of TreeView_InsertItem()

The macro calls the Win32 function SendMessage(), which is supported by
Open32, passing zero as the wParam and a pointer to the
TV_INSERTSTRUCT as the lParam. The Developer API Extensions of OS/2
Warp calls the tree view class's window procedure TVOpen32WndProc() to
handle the message, passing the parameters to it as they are given to
SendMessage(). Since the parameters are passed unchanged, no
translation occurs in this step. Note that Developer API Extensions of OS/2
Warp does not call TVOS2WndProc(), which as we will see is the subclassed
window procedure for the translation window class. Instead, Developer API
Extensions calls TVOpen32WndProc(), which is the window procedure which
was originally specified when the class was registered with it by the call to
RegisterClass().

Chapter 7. Tree View Control Sample Program 205

LRESULT CALLBACK TVOpen32WndProc(HWND hwnd, UINT message,
WPARAM wParam, LPARAM lParam)

{
PTVWNDDATA pTVWndData;
if (message != WM_CREATE) {

pTVWndData = (PTVWNDDATA) GetWindowLong(hwnd, 0);
}
switch(message)
{
. . .

case TVM_INSERTITEM:
{

return MsgToTV(hwnd, TVM_INSERTITEM, wParam, lParam, pTVWndData);
break;

}
. . .
}

}

Figure 173. OS2TV.C: Processing the TVM_INSERTITEM Message

The code for TVOpen32WndProc() is shown in Figure 173. The window
procedure retrieves the pointer to the window's data using the Win32 API
GetWindowLong(). The window data contains window-specific information,
such as its window ID, the window handle of its container, and the handle to
its image list. Data is stored in the window long which allows the code to
be reentrant. TVOpen32WndProc() then calls MsgToTV(), passing the
window handle, message, message parameters, and pointer to the window
data.

1: LONG MsgToTV(HWND hwnd, ULONG msg, LONG wp, LONG lp, PTVWNDDATA pTVWndData)
2: {
3: switch(msg)
4: {
5: . . .
6: case TVM_INSERTITEM:
7: {
8: TV_INSERTSTRUCT *ins;
9: PRECORDCORE rec;
10: RECORDINSERT recsIn;
11: CNRINFO CnrInfo;
12: ULONG x;
13: ins = (TV_INSERTSTRUCT *) PVOIDFROMMP(lp);

Figure 174 (Part 1 of 2). OS2TV2.C: Processing the TVM_INSERTITEM Message

206 Open32 for OS/2 Warp

14: CnrInfo.cb = sizeof(CnrInfo);
15: WinSendMsg(pTVWndData->hwndContainer, CM_QUERYCNRINFO,
16: MPFROMP(&CnrInfo), MPFROMLONG(sizeof(CnrInfo)));
17:
18: rec = (PRECORDCORE) WinSendMsg(pTVWndData->hwndContainer, CM_ALLOCRECORD,
19: 0, MPFROMLONG(1L));
20: rec->flRecordAttr = 0l;
21: rec->ptlIcon.x =0;
22: rec->ptlIcon.y =0;
23: rec->preccNextRecord = NULL;
24: rec->pszIcon = 0L;
25: rec->pTreeItemDesc = (TREEITEMDESC*) malloc(sizeof(TREEITEMDESC));
26: rec->hptrMiniIcon = ins->item.iImage;
27: rec->hbmMiniBitmap = ins->item.iSelectedImage;
28: UpdateImages(rec, pTVWndData, &CnrInfo);
29: rec->pszText = (PSZ) ins->item.lParam;
30: rec->pszName = NULL;
31: rec->pszTree = strdup(ins->item.pszText);
32: recsIn.cb = sizeof(recsIn);
33: if (ins->hParent == TVI_ROOT)
34: recsIn.pRecordParent = 0;
35: else
36: recsIn.pRecordParent = ins->hParent;
37: switch((ULONG)ins->hInsertAfter)
38: {
39: case (ULONG)TVI_FIRST:
40: recsIn.pRecordOrder=(PRECORDCORE)CMA_FIRST;
41: break;
42: case (ULONG)TVI_LAST:
43: recsIn.pRecordOrder=(PRECORDCORE)CMA_END;
44: break;
45: default:
46: recsIn.pRecordOrder=ins->hInsertAfter;
47: }
48: recsIn.fInvalidateRecord=TRUE;
49: recsIn.zOrder=CMA_TOP;
50: recsIn.cRecordsInsert=1;
51: if(!WinSendMsg(pTVWndData->hwndContainer, CM_INSERTRECORD,
52: MPFROMP(rec), MPFROMP(&recsIn)))
53: {
54: //Error!!!
55: return FALSE;
56: } else {
57: //Ok!
58: return (LONG) rec;
59: }
60: }
61: . . .
62: }
63: }

Figure 174 (Part 2 of 2). OS2TV2.C: Processing the TVM_INSERTITEM Message

The source code for MsgToTV() is shown in Figure 174 on page 206. Line
numbers have been added for reference purposes. The function creates a
new RECORDCORE by sending the container a CM_ALLOCRECORD
message to allocate the memory (line 18). MsgToTV() then copies

Chapter 7. Tree View Control Sample Program 207

information from the TV_INSERTSTRUCT into the RECORDCORE, translating
specifications such as the item's parent (lines 33-36) and previous sibling
(lines 37-47). MsgToTV() also creates a RECORDINSERT structure and fills
in the values for it.

Several pieces of information exist in the TV_ITEM structure (a part of the
TV_INSERTSTRUCT) which do not exist in the RECORDCORE. To store this
information, the tree view translation control takes advantage of the fact that
the container supports many features which are never exercised by the tree
view. First, the tree view must store the indices of the item's image and
selected image. It makes use of two unused RECORDCORE members,
hptrMiniIcon and hbmMiniBitmap to do so (lines 26-27). The mini images are
never used by the container in tree mode, so there is essentially no risk of
system or data corruption. Second, 32-bit value lParam is available for
Win32 applications to use for private data storage. The value is stored in
pszText (line 29), which is normally used to store the address of a character
string. The string is only used in the container's text view, so again it is
basically safe to misuse the data member.

After the RECORDCORE and RECOREINSERT structures are created, the
function sends a CM_INSERTRECORD message to the container (lines
51-52). If the container returns 0, an error occurred and the function returns
FALSE (lines 54-55). Otherwise, the item was added correctly and the
function returns the address of the RECORDCORE (lines 57-58).

The RECORDCORE address serves as the handle to the tree view item
(HTREEITEM). Because the logical structure of HTREEITEM is conveniently
not defined in Win32, applications cannot modify items directly. Therefore,
the actual value and meaning of HTREEITEM is not important for the Win32
application. HTREEITEM is defined in OS2WINTV.H as a pointer to a
RECORDCORE, as shown in Figure 175.

#ifdef _OS2WIN_H
typedef struct _RECORDCORE RECORDCORE, *PRECORDCORE;
#endif

typedef PRECORDCORE HTREEITEM;

Figure 175. OS2WINTV.H: Definition of HTREEITEM

7.1.4.2 CN_CONTEXTMENU Message
When the user clicks the second mouse button on a container, the control
sends its parent a CN_CONTEXTMENU message so it can display a
context-sensitive pop-up menu. In this section, we will see how the Open32

208 Open32 for OS/2 Warp

tree view control receives and translates this message for its parent
window.

The message begins when the container sends a WM_CONTROL message
with the notifycode set to CN_CONTEXTMENU. OS/2 calls the tree view's
window procedure, TVOS2WndProc(), to process the message. Note that the
container's message is not sent to TVOpen32WndProc().

Figure 176 shows the section of TVOS2WndProc() which processes the
CN_CONTEXTMENU message.

MRESULT EXPENTRY TVOS2WndProc(HWND hwnd, ULONG msg, MPARAM mp1, MPARAM mp2)
{

PTVWNDDATA pTVWndData;
pTVWndData = (PTVWNDDATA) Open32GetLong(hwnd, 0);
switch (msg)
{

case WM_CONTROL:
{

switch(SHORT2FROMMP(mp1))
{

. . .
case CN_CONTEXTMENU: // Sent when user presses mouse button

// 2 to open a context-sensitive menu
{

NMHDR nh;
nh.hwndFrom = hwnd;
nh.idFrom = pTVWndData->WindowID;
nh.code = NM_RCLICK;
Open32SendMsg(pTVWndData->hwndWinParent, 0x004E, // WM_NOTIFY

pTVWndData->WindowID, (ULONG) MPFROMP(&nh));
break;

}
. . .

}
}
default:
{

return pTVWndData->oldWP(hwnd, msg, mp1, mp2);
}

}
return FALSE;

}

Figure 176. OS2TV.C: TVOS2WndProc() Processing CN_CONTEXTMENU

The tree view control must first retrieve the information about itself. The
data is stored in a PTVWNDDATA structure, and a pointer to each tree view
control's data structure is stored in its window longs. Because the window
long is stored by Open32, the tree view control must call Open32GetLong()
to retrieve the pointer; calling the OS/2 API WinQueryWindowULong() will
not work because OS/2 APIs cannot access the window long stored by

Chapter 7. Tree View Control Sample Program 209

Open32. Open32GetLong() is defined in OPEN32TV.C, as shown in in
Figure 177 on page 210.

ULONG Open32GetLong(HWND hwnd, ULONG index)
{

return (ULONG) GetWindowLong(hwnd, index);
}

Figure 177. OPEN32TV.C: Open32GetLong()

TVOS2WndProc() then creates a NMHDR (notify message header), which is
a Win32 structure. The field nh.code is set to NM_RCLICK, which means
that the user has pressed the right mouse button. Note that a slight
assumption is at work here. The tree view cannot know what the
application will do with the NM_RCLICK message, but it is a reasonable
assumption that it may display a context menu, since most Win32 programs
use the second mouse button to display context menus.

After the NMHDR has been created, the tree view sends a WM_NOTIFY
message to its parent window. Note that it cannot use WinSendMsg() to do
this, as the message will be filtered and removed by the Open32 translation
layer. Therefore, it calls Open32SendMsg() to send the message.

Open32SendMsg() is defined in OPEN32TV.C, as shown in Figure 178.

ULONG Open32SendMsg(HWND hwnd, ULONG msg, ULONG wp, ULONG lp)
{

return SendMessage(hwnd, msg, wp, lp);
}

Figure 178. OPEN32TV.C: Open32SendMsg()

The function simply calls the Open32 function SendMessage(). It does not
translate the message. Since SendMessage() is an Open32 function, it will
directly call the parent window's window procedure without filtering the
message. In this way, the tree view control can send the WM_NOTIFY
message to its parent window.

7.1.5 Handling the Image List
In Win32 programming, an image list is required by tree view to store the
bitmaps or icons associated with tree view items. The Win32 application is
responsible for creating and populating the image list. It sends a message
to tree view to set the image list.

While this can help reduce resource usage in Windows (the image list is
designed to be resource efficient), it complicates the creation of the tree

210 Open32 for OS/2 Warp

view translation control. The container control does not use anything like
the image list. To maintain source-level compatibility with Win32
applications, the tree view translation control must also support an image
list.

For this reason, a basic implementation of an image list was created to
accompany the tree view translation control. The OS/2 image list differs
slightly from the Win32 image list, and thus it requires a few small changes
to the Win32 source code.

The source code for the OS/2 image list is in the file OPEN32IL.C in the
same directory as the tree view translation control source code. It also has
a header file, OS2WINIL.H.

OPEN32IL.C contains several functions, as outlined in Table 9.

Table 9 (Page 1 of 2). Functions Defined in OPEN32IL.C

Function Purpose

HIMAGELIST ImageList_Create (int cx, int cy,
UINT flags, int cInitial, int cGrow)

Creates a new image list with cInitial images
of width cx and height cy. The flags and
cGrow parameters are stored internally for
future reference.

void ImageList_Grow(HIMAGELIST himl) Increases the size of the image list by the
amount specified when the image list was
created. The image list will automatically call
this function when necessary; applications
and translation controls should never call it
directly.

int ImageList_Add (HIMAGELIST himl, ULONG
idImage, ULONG idMask)

Adds a bitmap to the image list. The idImage
parameter specifies the numeric ID of the
bitmap in the executable file; idMask specifies
the bitmap mask to be used with the image.

int ImageList_Replace (HIMAGELIST himl, int i,
ULONG idImage, ULONG idMask)

Replaces a bitmap in the image list. The i
parameter specifies the index of the image to
be replaced; idImage specifies the numeric ID
of the new bitmap in the executable file;
idMask specifies the new bitmap mask to be
used with the image.

int ImageList_AddIcon (HIMAGELIST himl,
ULONG idImage)

Adds an icon to the image list. The idImage
parameter specifies the numeric ID of the icon
in the executable file.

int ImageList_ReplaceIcon (HIMAGELIST himl,
int i, ULONG idImage)

Adds an icon to the image list. The i
parameter specifies the image to replace and
idImage specifies the numeric ID of the new
icon in the executable file.

Chapter 7. Tree View Control Sample Program 211

Table 9 (Page 2 of 2). Functions Defined in OPEN32IL.C

Function Purpose

ULONG ImageList_GetImage (HIMAGELIST
himl, int index)

Retrieves the handle to the image index. This
function is used by the Open32 tree view
control and has no counterpart in the Win32
image list.

ULONG ImageList_GetMask (HIMAGELIST
himl, int index)

Retrieves the handle to the image mask index.
This function is used by the Open32 tree view
control and has no counterpart in the Win32
image list.

IMAGETYPE ImageList_GetType (HIMAGELIST
himl)

Returns the type of images in the image list.
Valid values are icon, bitmap, and unknown.
This function is used by the Open32 tree view
control and has no counterpart in the Win32
image list.

BOOL ImageList_GetSize (HIMAGELIST himl,
short * cx, short * cy)

The height and width of the images in the
image list are put in cx and cy, respectively.
This is equivalent to ImageList_GetIconSize(),
except that short integers are used. This
function is used by the Open32 tree view
control.

BOOL ImageList_Remove(HIMAGELIST himl,
int index)

The image index is removed from the list and
its resources are freed from memory.

ULONG ImageList_GetStyle(HIMAGELIST himl) Returns the style flag that was specified when
the image list was created. This can be used
by translation controls to determine if the
image list uses masks.

BOOL ImageList_Destroy (HIMAGELIST himl) Destroys the image list, freeing all memory
and resources.

Although the Open32 image list supplies only the basic image list functions,
it may serve many applications very well. It allows either bitmaps or icons
of any size to be inserted into the image list, although the two cannot both
be present in one image list. It will automatically grow as needed.

The Win32 image list works by copying images added to it into a single
large bitmap. On the other hand, the OS/2 image list works by simply
calling WinLoadIcon or GpiLoadBitmap to load the bitmap or icon from the
application's executable file. This assumes that the resources are not
bound to another file or created at run-time. While loading the resources
individually in OS/2 will use many image handles, OS/2 does not restrict the
number of open images which Windows 95 does. Therefore, the only
limitation on the number of images that an image list can contain is the
availability of memory.

212 Open32 for OS/2 Warp

7.1.5.1 OS/2 Image List Precautions
Because the focus of this chapter is on the tree view translation control, the
image list contains only the functions needed for the tree view control to
work. While it provides functions for adding and replacing images and will
dynamically grow, it performs very little error checking to ensure function
parameters are valid. An incorrect parameter passed to an image list
function could easily generate a memory access violation and cause OS/2 to
terminate the program.

The OS/2 image list may require modification before it will work for your
application. One important thing to keep in mind when modifying the image
list is that image handles returned by Open32 functions cannot be used with
OS/2 functions. Therefore, handles returned by LoadIcon() and
LoadBitmap() cannot be passed to the OS/2 container control or to any
other OS/2 control. While doing so probably will not cause any system
errors (we never experienced any during development), the image will not
appear.

7.2 Using the Tree View Translation Control

In this section we will use the tree view translation control, described in 7.1,
“How the OS/2 Tree View Control Works” on page 196, to migrate a sample
application. The sample program, TVTest, demonstrates the tree view's
capabilities and allows the user to experiment with the tree view's various
functions.

The TVTest program was initially written for Windows 95 to demonstrate the
tree view control. Although it was written expressly to be used as a
migration sample, no special consideration was given at the time it was
written to simplify the migration. By using the tree view translation control,
very few changes are necessary to migrate it to OS/2.

7.2.1 Copying the Source Files
The Win32 source code for the TVTest program is on the CD in the directory
TVTEST WIN32. We recommend that you copy the files from there to your

hard drive in OPEN32 TVTEST MIGRATE so you can convert the original
Win32 program into a new OS/2 program. You will also need the Open32
tree view control library, which is on the CD in TVTEST OPEN32TV and
should be copied to OPEN32 TVTEST OPEN32TV. A completely migrated
TVTest application is on the CD in TREEVIEW OS2.

Chapter 7. Tree View Control Sample Program 213

7.2.2 Changes to the Source Code
In line with the goals for the Open32 tree view control, very few changes are
required to the program source code.

7.2.2.1 Changing Header Files
The Win32 program must include different header files for Open32
compilation. This change is shown in Figure 179.

#ifndef OS2
#include <windows.h>
#include <commctrl.h>
#include "tvtest.h"
#else
#include <os2win.h>
#include <string.h>
#include <malloc.h>
#include <os2wintv.h> // Open32 Tree View control
#include <os2il.h> // Open32 Image List support
#include "tvtest.h"
#endif

Figure 179. TVTEST.C: Changes to the #include Statements

The way OS/2 header files correspond to Win32 header files is shown in
Table 10.

Table 10. Header File Correspondence between Windows and OS/2

Windows Header File OS/2 Header File Explanation

<windows.h> <os2win.h> Open32 header file replaces the standard
Windows header file.

none <string.h>
<malloc.h>

While Microsoft Visual C++ automatically
includes several standard header files,
VisualAge C++ does not. As a result, they
must be manually specified for OS/2
compilation.

<commctrl.h> <os2wintv.h>
<os2il.h>

The <commctrl.h> header file defines all of the
Win32 common controls, including the tree
view and image list. The OS/2 tree view
control is defined in <os2wintv.h> and a basic
image list is defined in <os2il.h>.

"tvtest.h" "tvtest.h" The same file defines the numeric resource
IDs.

214 Open32 for OS/2 Warp

7.2.2.2 Changing InitCommonControls()
The Win32 API InitCommonControls() must be changed to InitTreeView().
This change is shown in Figure 180.

#ifdef OS2
InitTreeView(hInst);

#else // Windows
InitCommonControls();

#endif

Figure 180. Changes to TVTEST.C

Note

All of the changes shown in this chapter are made using precompiler
#ifdefs. While excessive precompiler statements can create confusing
code, a few small #ifdefs, such as those in Figure 179 on page 214 and
Figure 180, can allow small differences between platforms to be
maintained in the same file. This simplifies program maintenance, since
changes need to be made in only one file.

7.2.2.3 Changing ImageList Functions
The TVTest sample program uses an image list, as required by the Win32
tree view control. In this section we will discuss the changes necessary to
migrate the image list. See 7.1.5, “Handling the Image List” on page 210
that covers the OS/2 image list and how it differs from the Win32 image list.

The sample image list for OS/2 requires the Win32 application add images
by passing ImageList_Add() a resource ID, instead of an image handle as
used by the Win32 image list. See 7.1.5, “Handling the Image List” on
page 210 for more information on this difference. The Win32 application
code for initializing the images in the image list must be changed to pass
the resource ID instead of the image handle.

The original code for adding the icons is shown in Figure 181 on page 216.

Chapter 7. Tree View Control Sample Program 215

case ID_IMAGELIST_ICONS:
{

HIMAGELIST old, Icons;
HICON hIcon;
Icons = ImageList_Create(32, 32, ILC_COLOR4 | ILC_MASK, 4, 4);
if (!Icons)

break;
hIcon = LoadIcon(hInst, MAKEINTRESOURCE(IDI_RECTANGLE));
ImageList_AddIcon(himl, hIcon);
hIcon = LoadIcon(hInst, MAKEINTRESOURCE(IDI_ROUND));
ImageList_AddIcon(himl, hIcon);
hIcon = LoadIcon(hInst, MAKEINTRESOURCE(IDI_CIRCLE));
ImageList_AddIcon(himl, hIcon);
hIcon = LoadIcon(hInst, MAKEINTRESOURCE(IDI_TRIANGLE));
ImageList_AddIcon(himl, hIcon);
old = TreeView_SetImageList(hwndTV, Icons, TVSIL_NORMAL);
if (old)

ImageList_Destroy(old);
CheckMenuItem(GetMenu(hwnd), ID_IMAGELIST_ICONS, MF_CHECKED);
CheckMenuItem(GetMenu(hwnd), ID_IMAGELIST_BITMAPS, MF_UNCHECKED);
break;

}

Figure 181. TVTEST.C: Original Code for Adding Images to Image List

In the original program, this code is executed during the processing of the
ID_IMAGELIST_ICONS message. Since all the lines which load and add
icons would need to be changed for OS/2, the decision was made to isolate
the image list initialization in another function. The function AddIcons() is
system dependent and is an example of traditional mixed mode
programming.

Similar changes are needed for the handling of the ID_IMAGELIST_BITMAPS
message. Another system-dependent function named AddBitmaps() loads
the bitmap images.

The complete definition of AddImages() and AddBitmaps() is shown in
Figure 182 on page 217. The revised code for processing
ID_IMAGELIST_ICONS and ID_IMAGELIST_BITMAPS is shown in Figure 183
on page 219.

216 Open32 for OS/2 Warp

#ifdef OS2
BOOL AddIcons(HIMAGELIST himl)
{

ImageList_AddIcon(himl, IDI_RECTANGLE);
ImageList_AddIcon(himl, IDI_ROUND);
ImageList_AddIcon(himl, IDI_CIRCLE);
ImageList_AddIcon(himl, IDI_TRIANGLE);
return TRUE;

}

BOOL AddBitmaps(HIMAGELIST himl)
{

ImageList_Add(himl, IDB_BITMAPA, IDB_BITMAPMASK);
ImageList_Add(himl, IDB_BITMAPB, IDB_BITMAPMASK);
ImageList_Add(himl, IDB_BITMAPC, IDB_BITMAPMASK);
ImageList_Add(himl, IDB_BITMAPD, IDB_BITMAPMASK);
return TRUE;

}
#else // ****************** WINDOWS *************
BOOL AddIcons(HIMAGELIST himl)
}

HICON hIcon;
hIcon = LoadIcon(hInst, MAKEINTRESOURCE(IDI_RECTANGLE));
ImageList_AddIcon(himl, hIcon);
DeleteObject(hIcon);
hIcon = LoadIcon(hInst, MAKEINTRESOURCE(IDI_ROUND));
ImageList_AddIcon(himl, hIcon);
DeleteObject(hIcon);
hIcon = LoadIcon(hInst, MAKEINTRESOURCE(IDI_CIRCLE));
ImageList_AddIcon(himl, hIcon);
DeleteObject(hIcon);
hIcon = LoadIcon(hInst, MAKEINTRESOURCE(IDI_TRIANGLE));
ImageList_AddIcon(himl, hIcon);
DeleteObject(hIcon);
return TRUE;

}

Figure 182 (Part 1 of 2). TVTEST.C: AddIcons() for both Windows and OS/2

Chapter 7. Tree View Control Sample Program 217

BOOL AddBitmaps(HIMAGELIST himl)
{

HBITMAP hbm, mask;
mask = LoadBitmap(hInst, MAKEINTRESOURCE(IDB_BITMAPMASK));
hbm = LoadBitmap(hInst, MAKEINTRESOURCE(IDB_BITMAPA));
ImageList_Add(himl, hbm, mask);
DeleteObject(hbm);
hbm = LoadBitmap(hInst, MAKEINTRESOURCE(IDB_BITMAPB));
ImageList_Add(himl, hbm, mask);
DeleteObject(hbm);
hbm = LoadBitmap(hInst, MAKEINTRESOURCE(IDB_BITMAPC));
ImageList_Add(himl, hbm, mask);
DeleteObject(hbm);
hbm = LoadBitmap(hInst, MAKEINTRESOURCE(IDB_BITMAPD));
ImageList_Add(himl, hbm, mask);
DeleteObject(hbm);
DeleteObject(mask);
return TRUE;

}
#endif

Figure 182 (Part 2 of 2). TVTEST.C: AddIcons() for both Windows and OS/2

218 Open32 for OS/2 Warp

case ID_IMAGELIST_ICONS:
{

HIMAGELIST old, Icons;
Icons = ImageList_Create(32, 32, ILC_COLOR4 | ILC_MASK, 4, 4);
if (!Icons)

break;
if (!AddIcons(Icons)) {

ImageList_Destroy(Icons);
break;

}
old = TreeView_SetImageList(hwndTV, Icons, TVSIL_NORMAL);
if (old)

ImageList_Destroy(old);
CheckMenuItem(GetMenu(hwnd), ID_IMAGELIST_ICONS, MF_CHECKED);
CheckMenuItem(GetMenu(hwnd), ID_IMAGELIST_BITMAPS, MF_UNCHECKED);
break;

}
case ID_IMAGELIST_BITMAPS:

{
HIMAGELIST old, Bitmaps;
Bitmaps = ImageList_Create(64, 64, ILC_COLOR4 | ILC_MASK, 4, 4);
if (!Bitmaps)

break;
if (!AddBitmaps(Bitmaps)) {

ImageList_Destroy(Bitmaps);
break;

}
old = TreeView_SetImageList(hwndTV, Bitmaps, TVSIL_NORMAL);
if (old)

ImageList_Destroy(old);
CheckMenuItem(GetMenu(hwnd), ID_IMAGELIST_ICONS, MF_UNCHECKED);
CheckMenuItem(GetMenu(hwnd), ID_IMAGELIST_BITMAPS, MF_CHECKED);
break;

}

Figure 183. TVTEST.C: Revised Code for ID_IMAGELIST_ICONS and ID_IMAGELIST_BITMAPS

Again, a preprocessor #ifdef is used to determine whether the OS/2 or
Win32 function should be compiled. By isolating the system-dependent code
into whole functions, the message processing code remains clear and easy
to understand.

Since the functions are short and essentially the only system-dependent
code in TVTEST.C, they have been left there. For larger implementations
which use many images, it would probably be a better idea to separate the
functions into two mixed mode dependent files. See Chapter 5, “Mixed
Mode Sample Program” on page 133 for more information on mixed mode
programming.

7.2.3 Converting Resources
You can use SMART to automatically convert the TVTEST.RC file from Win32
format to OS/2 format. SMART will also convert the Win32 format icon and
bitmap files to OS/2 format. There should not be any errors during the

Chapter 7. Tree View Control Sample Program 219

conversion, but you will need to make a few manual adjustments to the
Resource Compiler file. First, you must add a statement at the beginning to
include <os2.h>. Second, you must define IDC_STATIC, a constant defined
in the Windows header files but not in the Open32 header files. Last, you
need to comment out the line which includes afxres.h, since it is not needed
for Open32 compilation. All of these changes are at the beginning of
TVTEST.RC and are shown in Figure 184.

/* SM$FO J:\CD\TVTEST\OS2\tvtest.rc - Monday 08/19/1996 15:49:49 */
//Microsoft Developer Studio generated resource script.
//
#include <os2.h>
#include "tvtest.h"

#define IDC_STATIC -1

#define APSTUDIO_READONLY_SYMBOLS
///
//
// Generated from the TEXTINCLUDE 2 resource.
//
//#include "afxres.h"

Figure 184. Adding <os2.h> to TVTEST.RC

After finishing the program and running it, you may notice that some dialog
box items do not appear correctly because their text is cut off. This is due
to differences in the font used in Windows and the one used in OS/2. You
can either use the OS/2 dialog editor which comes with the OS/2 Warp
Toolkit or manually edit the Resource Compiler file to change the items'
widths.

7.2.4 Creating a Makefile
Before building the application, you will need to create a makefile for OS/2.
The makefile from the OS/2 migrated TVTest sample program is shown in
Figure 185 on page 221.

220 Open32 for OS/2 Warp

#
MAKEFILE: OS/2 Makefile for TVTest
#

ALL: TVTEST.EXE

TVTEST.OBJ : TVTEST.C TVTEST.H
ICC /I..\OPEN32TV /DOS2 /C /Ss TVTEST.C

MAIN.OBJ : MAIN.C
ICC /DOS2 /C /Ss MAIN.C

TVTEST.RES: TVTEST.RC
RC -r TVTEST.RC

TVTEST.EXE: TVTEST.OBJ TVTEST.RES ..\OPEN32\OPEN32TV.LIB MAIN.OBJ
ILINK TVTEST.OBJ MAIN.OBJ PMWINX.LIB ..\OPEN32\OPEN32TV.LIB TVTEST.DEF
RC TVTEST.RES TVTEST.EXE

Figure 185. MAKEFILE: TVTest Makefile

7.2.5 Creating a DEF File
The link definitions (DEF) file is required to give the application a name and
a stack. The DEF file from the OS/2 migrated TVTest application is shown in
Figure 186.

;
; TVTEST.DEF: Link definitions file for TVTest
;
NAME TVTEST WINDOWAPI
DESCRIPTION 'TVTest Sample Application (C) Copyright IBM, Corp., 1996'
STACKSIZE 65536

Figure 186. TVTEST.DEF

7.2.6 Building the Application
After all the files are prepared, you need to build the application executable.
Remember the link step must specify the OS/2 tree view library file to have
it linked in with the application. This will resolve the call to InitTreeView()
and provide the window procedures needed for the OS/2 tree view class.
The makefile shown in Figure 185 already specifies the Open32TV library.

If you copied the files as recommended in 7.2.1, “Copying the Source Files”
on page 213 and have modified them as outlined in this chapter, the
program can be built as shown in Figure 187 on page 222.

Chapter 7. Tree View Control Sample Program 221

[F:\CDIMAGE\TVTEST\OS2]nmake

Operating System/2 Program Maintenance Utility
Version 3.00.008 May 9 1995
Copyright (C) IBM Corporation 1988-1995
Copyright (C) Microsoft Corp. 1988-1991
All rights reserved.

ICC /I..\OPEN32TV /DOS2 /C /Ss ..\TVTEST.C
IBM VisualAge C ++ for OS/2, Version 3
(C) Copyright IBM Corp. 1991, 1995.
- Licensed Materials - Program Property of IBM - All Rights Reserved.

H:\TOOLKIT\H\os2win.h(14:4) : warning EDC0523: Obsolete #pragma checkout ignored
. Use #pragma info or the /W options.

RC -r TVTEST.RC
Operating System/2 Resource Compiler
Version 3.01.002 Mar 12 1996
(C) Copyright IBM Corporation 1988-1996
(C) Copyright Microsoft Corp. 1985-1996
All rights reserved.

Creating binary resource file TVTEST.RES
RC: RCPP -E -D RC_INVOKED -W4 -f TVTEST.RC -ef H:\IBMCPP\BIN\RCPP.ERR -I H:\IBM
CPP\INCLUDE -I H:\IBMCPP\INCLUDE\OS2 -I H:\IBMCPP\INC -I H:\IBMCPP\INCLUDE\SOM -
I H:\TOOLKIT\BETA\H -I H:\TOOLKIT\SOM\INCLUDE -I H:\TOOLKIT\H -I H:\TOOLKIT\INC
-I F:\TOOLKIT\BETA\H -I F:\TOOLKIT\SOM\INCLUDE -I F:\TOOLKIT\H -I . -I F:\TOOLKI
T\INC

TVTEST.RC.................
ICC /DOS2 /C /Ss MAIN.C

IBM VisualAge C ++ for OS/2, Version 3
(C) Copyright IBM Corp. 1991, 1995.
- Licensed Materials - Program Property of IBM - All Rights Reserved.

H:\TOOLKIT\H\os2win.h(14:4) : warning EDC0523: Obsolete #pragma checkout ignored
. Use #pragma info or the /W options.

ILINK TVTEST.OBJ MAIN.OBJ PMWINX.LIB ..\OPEN32TV\OPEN32TV.LIB TVTEST.DEF

IBM(R) Linker for OS/2(R), Version 01.00.05
(C) Copyright IBM Corporation 1988, 1995.
(C) Copyright Microsoft Corp. 1988, 1989.
- Licensed Material - Program-Property of IBM - All Rights Reserved.

Figure 187 (Part 1 of 2). Building TVTest

222 Open32 for OS/2 Warp

RC TVTEST.RES TVTEST.EXE
Operating System/2 Resource Compiler
Version 3.01.002 Mar 12 1996
(C) Copyright IBM Corporation 1988-1996
(C) Copyright Microsoft Corp. 1985-1996
All rights reserved.

Reading binary resource file TVTEST.RES

.................
Writing resources to OS/2 v2.0 Linear .EXE file
Writing 1 DEMAND resource object(s)
Writing: 18204 bytes in 5 page(s)
108.1 (874 bytes)
109.1 (874 bytes)
110.1 (874 bytes)
111.1 (874 bytes)
112.1 (874 bytes)
113.2 (2136 bytes)
114.2 (2136 bytes)
115.2 (2136 bytes)
116.2 (2136 bytes)
117.2 (2166 bytes)
101.3 (603 bytes)
102.4 (444 bytes)
103.4 (774 bytes)
104.4 (282 bytes)
105.4 (438 bytes)
106.4 (366 bytes)
107.4 (194 bytes)

[F:\CDIMAGE\TVTEST\OS2]

Figure 187 (Part 2 of 2). Building TVTest

7.2.7 Running the New TVTest for OS/2
With the application fully built, you are ready to try the TVTest program
under OS/2. After building the main executable, you can run the application
from the command line as shown in Figure 188.

[F: CDIMAGE TVTEST OS2]tvtest

Figure 188. Running TVTest from the Command Line

The main window is shown in Figure 189 on page 224.

Chapter 7. Tree View Control Sample Program 223

Figure 189. TVTest is now an OS/2 Program

7.3 Extending the OS/2 Tree View Control

The OS/2 tree view control used in this chapter is an incomplete translation
control. While it provides the major functions required by most Win32
applications, it does not support some messages and functions. The
following are not supported:

• Drag and drop

- TVN_BEGINDRAG
- TVN_BEGINRDRAG
- TVM_CREATEDRAGIMAGE
- TVGN_DROPHILITE

• Get edit control (TVM_GETEDITCONTROL)

• Hit testing (TVM_HITTEST)

• Sorting

- TVM_SORTCHILDREN
- TVM_SORTCHILDRENCB

• First visible item (TVGN_FIRSTVISIBLE)

224 Open32 for OS/2 Warp

• Incremental search strings (TVM_GETISEARCHSTRING)

• Information callback

- TVN_GETDISPINFO
- TVN_SETDISPINFO

For many applications, these unsupported messages are not used so the
tree view translation control can be used without modification. For those
applications that use these additional messages, the OS/2 tree view control
can be extended to include support for them. The OS/2 container provides
drag-and-drop, hit testing, sorting, and call-back functions, so these can be
added to the translation control. An incremental search could be
implemented by subclassing the container window so that keystroke
messages can be trapped and used by the tree view translation control.

7.4 Creating your own Translation Controls

The technique used in this chapter to recreate the tree view control can be
used to implement other Win32 window classes that are not supported by
Developer API Extensions. To help you start migrating a window class,
template files have been created with the basic functions needed to
implement a Win32 control under OS/2. See 7.4.1, “Template Source Files”
for a description of these files and their contents.

In developing a translation control, it is good idea to first write a Win32 test
bed application such as TVTest. The tree view translation control was
incrementally developed using the TVTest program as a test environment.
TVTest gives you complete control over when and which messages are sent
to the tree view control, letting you test different messages in different
situations. One example would be deleting the last item in the tree view to
make sure it does not attempt to access unallocated memory. TVTest also
lets you test sending the tree view an invalid combination of parameters.
An example would be inserting an item whose parent and previous sibling
are the same item. By making the test bed application simple, it is much
easier to debug the translation control.

7.4.1 Template Source Files
The template source files are on the CD in OPEN32CC. There are six files,
as outlined in Table 11 on page 226.

Chapter 7. Tree View Control Sample Program 225

Table 11. Files for a Custom Translation Control

File Purpose

OPEN32CC.C This file is compiled with the <os2win.h>
header file and contains the Open32 source
code for the translation control.

OS2CC.C This file is compiled with the <os2.h> header
file and contains the OS/2 source code for the
translation control. This file must be modified
the most, since most translation will occur in
its two functions.

PRIVATE.H This is the header file which contains private
information on the structure of the translation
control. It is compiled into OPEN32CC.C and
OS2CC.C, but it will not be used by any
applications which use the translation control.

OS2WINCC.H This file contains the public declaration of the
translation control and any associated
constants, messages, functions, and data
structures. It is distributed with the library
and included by Open32 applications which
use the translation control.

OS2CCTRL.H This file contains general definitions needed
by any translation control. It includes the
NMHDR structure and NM_ message
constants. It is generally best if only one copy
of it is kept, since it also provides space for
recording what translation controls use what
notification message range constants.

MAKEFILE An OS/2 makefile for building the source code
into a library.

7.4.2 Modifying the Template
The first step in working with the template files is to create a copy of the
files to work with. The files are designed to be used to create a library,
which is subsequently used by a Win32 application. Therefore, the source
files for the translation control are usually kept in a directory by themselves,
instead of with the OS/2 dependent files for an application. The actual name
of the directory dependents on your particular project and style.

7.4.2.1 Renaming Template Names
It is generally recommended that you rename the files to reflect the name of
the control that they implement. As template files, the letters CC are used
for Common Control. The letters are used throughout the templates,

226 Open32 for OS/2 Warp

including file names, function names, constants, and data structure names.
To change the name, search for CC and replace occurrences with an
acronym for your control. It is generally best to keep the acronym to just
two letters, so that files such as OPEN32CC.C and OS2WINCC.H can retain
their naming conventions.

7.4.2.2 Adding Code to the Templates
Their are several modifications which will probably have to be made before
the translation controls is even minimally functional. First, you will need to
add code to create the OS/2 equivalent control to the MsgToCC() function
during WM_CREATE processing. The template already includes code to
copy some information into the template's private data structure, such as
the window handle of the parent.

The private data structure, named CCWNDDATA, will also need to be
changed for most controls. Allocation of space for the structure and
retrieval during message processing already occurs in the template.

After the new control properly processes the WM_CREATE message, you
can incrementally add processing for control-specific messages. You should
define message IDs in OS2WINCC.H, which is shared with the Win32
application. Don't compile the Win32 application with COMMCTRL.H, as the
numeric IDs in it are not valid on OS/2 and may not match the IDs in
OS2WINCC.H. Always begin numbering command messages with
CCM_BASE, which is defined in OS2CCTRL.H.

Notification messages are sent with the WM_NOTIFY message to the Win32
application. As you add support for them, you should update the
OS2CCTRL.H file to reflect the notification range you are using for the
control. It is very important that the notification ranges for two controls do
not overlap, as unpredictable results may occur in the application program.

7.4.2.3 How to Program Command Message Handling
Command messages are sent by the Win32 application to the translation
control. Since the translation control was registered as a window class
using the Win32 function RegisterClass(), messages from the Win32
application are processed by the Win32 window procedure
CCOpen32WndProc(). You will need to modify this procedure by adding
case statements for messages which your translation control will process.
These should all be listed before a single call to MsgToCC(). An example of
this, from the tree view control, is shown in Figure 190 on page 228.

Chapter 7. Tree View Control Sample Program 227

LRESULT CALLBACK TVOpen32WndProc(HWND hwnd, UINT message,
WPARAM wParam, LPARAM lParam)

{
. . .
switch(message)
{

case WM_CREATE:
pTVWndData = malloc(sizeof(TVWNDDATA));
SetWindowLong(hwnd, 0, (long) pTVWndData);
MsgToTV(hwnd, 0x0001, wParam, lParam, pTVWndData); // WM_CREATE
break;

. . .

case TVM_EXPAND:
case TVM_GETCOUNT:
case TVM_GETIMAGELIST:
case TVM_GETINDENT:
case TVM_GETITEM:
case TVM_GETITEMRECT:
case TVM_GETNEXTITEM:
case TVM_SETINDENT:
case TVM_SETITEM:
case TVM_SETIMAGELIST:

return MsgToTV(hwnd, message, wParam, lParam, pTVWndData);

default:
return DefWindowProc(hwnd, message, wParam, lParam);

}
return FALSE;

}

Figure 190. OPEN32TV.C: Directing Messages to MsgToTV()

The list of TVM_ constants causes those messages to be forwarded to
MsgToTV(), which is defined in OS2TV.C.

While at first it might seem to make sense to translate command messages
in CCOpen32WndProc(), doing so would actually require additional work.
This is because during translation, the control must access both Win32 and
OS/2 structures. The Win32 code, where CCOpen32WndProc() is written,
has the Win32 structures defined, but not the OS/2 structures. The OS/2
code, where MsgToCC() is written, has the OS/2 structures defined, but not
the Win32 structures. The key, however, is that you will already have to
write the structures in OS2WINCC.H for the Win32 application. The OS/2
code can include OS2WINCC.H as well, and then have both the OS/2 and
Win32 structures defined.

The MsgToCC() function will actually contain the code for translating all
command messages. The contents of this function will depend on the
control which you are implementing.

228 Open32 for OS/2 Warp

7.4.2.4 How to Program Notification Message Handling
Notification messages are sent by the OS/2 child control to the translation
control interface. These need to be translated and forwarded to the Win32
parent to inform it of the user's actions with the control.

OS/2 calls CCOS2WndProc() to handle notification messages. This window
procedure replaces the Win32 window procedure and is set up during the
processing of WM_CREATE in MsgToCC(), shown in Figure 191.

LONG MsgToCC(HWND hwnd, ULONG msg, LONG wp, LONG lp, PCCWNDDATA pCCWndData)
{

switch(msg)
{

case WM_CREATE:
{

PWINCREATESTRUCT cs;
cs = (void *)lp;
pCCWndData->hwndWinParent = cs->hwndParent;
pCCWndData->WindowID = cs->hMenu;

// Actually create the child here

pCCWndData->oldWP=WinSubclassWindow(hwnd, (PFNWP) CCOS2WndProc);
return FALSE;

}
. . .

Figure 191. OS2CC.C: WM_CREATE Processing

The code calls WinSubclassWindow() to make the OS/2 window procedure
the function OS/2 will call when the child control sends messages to the
translation control. Without this call, messages would go through the
Open32 translation layer before they would be processed by
CCOpen32WndProc(). The Open32 translation layer would not forward the
control's notification messages because they are not supported by Open32.

When adding code to support notification messages, always call
Open32SendMsg() to send a message to the parent window. If you use
WinSendMsg(), the message will be removed and processed by Open32
support which is not what you want. You can access the parent window's
handle by using pCCWndData->hwndParent.

7.4.3 Hints on Creating Translation Controls
In developing the technique described in this chapter, many variations on
the general approach were tried, and essentially none of them worked. In
this section we will outline some of the changes to the basic technique
which seem like good ideas, but which actually don't work at all.

Chapter 7. Tree View Control Sample Program 229

7.4.3.1 Don't Register the Window Class with WinRegisterClass()
Initially, we tried registering the translation window class directly with OS/2
because we knew we would need to receive messages from the OS/2 child
control in an OS/2 window procedure. Unfortunately, Open32 apparently
maintains an internal list of valid, registered window classes which it will
allow Win32 applications to create. This allows Open32 to restrict Win32
applications from creating windows whose messages Open32 does not know
how to translate. Unfortunately, it also prevents Win32 applications from
creating OS/2-registered windows using CreateWindow().

The solution, as used by the tree view control and the template for other
common controls, is to register the class with Open32 using RegisterClass().
During WM_CREATE processing, WinSubclassWindow() is called to replace
the Win32 window procedure with an OS/2 window procedure. Messages
from the child control will be sent to the OS/2 window procedure. Open32
will continue to send messages from the Win32 application to the Win32
window procedure because it maintains internally the address of the window
procedure which was specified when the window class was registered using
RegisterClass().

7.4.3.2 Don't Send a Message to Yourself with WinSendMsg()
When a translation control needs to send itself a command message, don't
use WinSendMsg(). For example, in the tree view control's processing of
the TVM_SETIMAGELIST message, it adjusts the container's indent to the
size of the images. To do this, it sends itself the TVM_SETINDENT message
using Open32SendMsg(). If WinSendMsg() were used, the message would
be sent to TVOS2WndProc(), which does not handle the TVM_SETINDENT
message.

7.4.3.3 Don't Use Open32 Image Handles
Some Win32 common controls use icons and bitmaps to enhance their
displays. These images complicate the creation of a translation control
because image handles returned by Open32 functions cannot be used by
standard OS/2 functions. Therefore, images which the Win32 application
loads cannot be passed to OS/2 controls, such as the container.

In the tree view example, this problem was handled by replacing the code
which loads the images with a platform-dependent function. When compiled
for OS/2, the function passes the resource ID of the image to the Open32
image list, which then loads the image using OS/2 functions.

This approach has one major advantage over any other method: it is
relatively simple to implement. There are, however, two drawbacks. First,
the resources must be bound in the same executable or DLL as the Open32

230 Open32 for OS/2 Warp

image list functions. Second, the Win32 program must be changed to pass
the resource ID instead of the image handle.

In the tree view example, the first drawback was not a problem because all
of the code and resources were stored in a single executable. The second
drawback was also minor because the code for dealing with images was
already encapsulated by the image list, so changes to the Win32 program
could be isolated to a single function.

Large applications will expose the limitations of this approach to image
handling. In large applications, much of the application's program code is
in separate DLLs, and resources may be either bound to the DLL that
accesses them or bound together in a single resource DLL. Large
applications may also access more images throughout the program,
stipulating greater changes to the Win32 source code.

There is not easy solution to the limitations introduced by the simple design
of the Open32 image list. One possible approach to resolving the problem
is to allow the Win32 application to load the resources itself. This will
eliminate both limitations outlined above.

However, elaborate owner-draw code must be added to the translation
control to draw the images using Win32 function calls. The container, for
example, would send a CN_OWNDERDRAW message to CCOS2WndProc(),
which would call a custom procedure in OPEN32CC.C to draw the image in
the correct location. Due to the complexity of this approach, it has not been
attempted and its feasibility is unknown.

7.4.3.4 Don't Change the Win32 Test Application
In developing a translation control, it is very important that you not change
the Win32 test bed application which you are using to test the translation
control. This may seem obvious (after all, the whole point of a translation
control to is avoid changing the program), but it can be very tempting to
make a slight modification to the program so it will work properly with the
translation control. You should make every effort to adapt the translation
control to the Win32 program, and not the other way around.

This rule includes changes to the program's header files. You should
design the application so that it includes only one header file for each
common control it uses. You may need to adapt data types used in the
header file. Figure 192 on page 232 shows a portion of OS2WINTV.H which
defines PRECORDCORE only when compiling Win32 code.

Chapter 7. Tree View Control Sample Program 231

/* If compiling under Open32, define PRECORDCORE as pointer. */
#ifdef _OS2WIN_H
typedef struct _RECORDCORE RECORDCORE, *PRECORDCORE;
#endif

typedef PRECORDCORE HTREEITEM;

Figure 192. OS2WINTV.H: Conditional Definition of PRECORDCORE

If _OS2WIN_H is defined, then the <os2win.h> file has been included.
Therefore, the PRECORDCORE structure defined in <os2.h> is undefined.
We define it simply as a pointer to a structure. By conditionally defining
PRECORDCORE, we can be sure that it is defined before the typedef
statement which declares the type HTREEITEM.

7.4.3.5 Don't Use WinGetWindowULong()
You cannot use the OS/2 function WinGetWindowULong() to retrieve the
window data for the translation control. The control is registered through
Open32, and Open32 stores the window data. You must use the Win32
function GetWindowLong() to access the data. If you need to access the
data in an OS/2 compiled file (such as OS2CC.C), use Open32GetLong(),
which is defined in GENERAL.C.

Note

If you need to store window data, use the window data structure already
defined for you in PRIVATE.H. See 7.4.3.7, “Use Window Data for
Reentracy Compatibility” for more information.

7.4.3.6 Update OS2CCTRL.H
Whenever you begin to translate a control, update OS2CCTRL.H to claim the
notification message IDs your control will use. This file should be shared by
everyone who uses or writes translation controls. If more than one copy
exists, notification message IDs may overlap and cause errors in the Win32
program.

7.4.3.7 Use Window Data for Reentracy Compatibility
If you need to store window data, use the window data structure already
defined for you in PRIVATE.H. You can access members of the structure
with pCCWndData-> in both MsgToCC() and CCOS2WndProc(). These two
functions already contain code to load the pointer to the data when they are
called. Memory for the structure is allocated in CCOpen32WndProc() when
it processes the WM_CREATE message.

232 Open32 for OS/2 Warp

You should avoid using static variables in MsgToCC() and CCOS2WndProc()
because they can cause reentrancy problems. If more than one translation
control is created at once, the two controls will overwrite each other's data
in the static variables. This will cause display problems for one or both
controls and may cause the program to crash. Always store data in the
CCWNDDATA structure.

Chapter 7. Tree View Control Sample Program 233

234 Open32 for OS/2 Warp

Chapter 8. Existing Windows 16-bit Application Ported to OS/2

This section describes the migration of an existing Windows 16-bit
application to the OS/2 environment.

When porting a Windows 16-bit application to OS/2, there are many complex
issues which you will be faced with. While Open32 simplifies the migration
of the application's window interface, it does not address some problems
such as:

• Adjusting to the 32-bit flat memory model

• Replacing calls to DOS and BIOS interrupts for system services with
calls to Win32 equivalents

• Migrating on-line help files

• Adapting the program when previously used APIs are no longer
supported or no equivalent is available

• Supporting long file names

In this chapter we will discuss the steps required to port an existing
Windows 16-bit application to OS/2 using Open32 and how we address the
issues that we discovered in the approach we used.

The Address Manager sample program is used to demonstrate the steps
required to migrate an existing Windows 16-bit application program. A copy
of the original Win16 source code can be found in the ADDRESS WIN16
directory of the CD-ROM in this redbook. This code is redistributed from
Mastering Windows Utilities Programming with C++ by Michael J. Young,
by permission of SYBEX Inc. ISBN 0-7821-1286-2, Copyright 1994, SYBEX Inc.
All rights reserved.

We chose an existing Windows 16-bit application to migrate instead of
writing a new Windows 16-bit application sample in hopes of better
demonstrating the issues that you will face when porting your Windows
16-bit application programs and the steps required to migrate the
application to Open32.

8.1 Overview of the Program Structure

The Address program is written in C++ using a simple class library (it
does not use the Microsoft Foundation Class Library). The structure of the
library is shown in Figure 193 on page 236.

 Copyright IBM Corp. 1996 235

Figure 193. Window Class Structure Used in Address

The CApplication class encapsulates some of the general Windows
programming details. It is declared once as a global variable for a program.
Address Manager calls CApplication::Initialize() to set the commonly
accessed variables hInstCurrent, hInstPrevious, CmdLine, and CmdShow.
These are the same variables passed to the program's WinMain()
procedure.

CMDialog encapsulates the details of creating and managing a model dialog
box. Address Manager subclasses CMDialog into CFindDialog, which
manages a search dialog.

CMLDialog encapsulates the details of creating and managing a modeless
dialog box. Address Manager subclasses CMLDialog into CMainDialog,
which manages the program's main window.

Address also defines CDocument, which handles the details of file
management, and CQueue, which stores data in a linked list.

8.2 Overview of the Migration Process

The first step is to copy the Win16 source files to a new directory where they
can be modified and overwritten during the migration process. The Win16
source files are on the CD in the directory ADDRESS WIN16. A completely
ported application is in the ADDRESS OS2 directory.

236 Open32 for OS/2 Warp

[D:\OPEN32]md ADDRESS

[D:\OPEN32]md ADDRESS\MIGRATE

[D:\OPEN32]cd ADDRESS\MIGRATE

[D:\OPEN32\ADDRESS\MIGRATE]XCOPY F:\ADDRESS\WIN16*

Source files are being read...

F:\ADDRESS\WIN16\HELP.RTF
F:\ADDRESS\WIN16\ADDRESS.HLP
F:\ADDRESS\WIN16\ADDRESS.EXE
F:\ADDRESS\WIN16\DIALOG.CPP
F:\ADDRESS\WIN16\ADDRESS.IDE
F:\ADDRESS\WIN16\ADDRESS.HPJ
F:\ADDRESS\WIN16\DOCUMENT.CPP
F:\ADDRESS\WIN16\ADDRESS.CPP
F:\ADDRESS\WIN16\ADDRESS.H
F:\ADDRESS\WIN16\ADDRESS.RC
F:\ADDRESS\WIN16\RESOURCE.H
F:\ADDRESS\WIN16\ADDRESS.DEF
F:\ADDRESS\WIN16\HELP02.BMP
F:\ADDRESS\WIN16\HELP01.BMP
F:\ADDRESS\WIN16\ADDRESS.MAK
F:\ADDRESS\WIN16\ADDRESS.ICO
F:\ADDRESS\WIN16\WCLASSES.CPP
F:\ADDRESS\WIN16\WCLASSES.H

18 file(s) copied.

[D:\OPEN32\ADDRESS\MIGRATE]

Figure 194. Copying the Win16 Source Files for Migration

We recommend that you copy the files from ADDRESS WIN16 to your hard
drive in the directory OPEN32 ADDRESS MIGRATE. This process is shown
in Figure 194.

8.2.1 Changes to the Source Code
After the files have been copied, you need to modify the source code to be
Open32 compatible. There are quite a few changes to be made because the

Chapter 8. Existing Windows 16-bit Application Ported to OS/2 237

application is effectively going through two changes at once. First, it is
becoming Win32 compatible, and second it is becoming Open32 compatible.

Table 13 describes all of the changes that are needed to make the source
files compile and run under OS/2. The changes must be made for a variety
of reasons. As a result, the cause of each change is marked in Table 13 in
the Reason column. An explanation of the change codes is given in
Table 12.

Table 12. Codes for Changes to Address

Code Explanation

O Change made because of a difference between Open32 and Win32.

W32 Change made because of a difference between Win32 and Win16.

C Change made because of a difference between Microsoft Visual C++ and
VisualAge C++.

Table 13 (Page 1 of 4). Changes to the Address Source Files

File Line Reason Description of change

wclasses.h 9 O Replace

#include <windows.h>

with

#include <os2win.h>

wclasses.h 77 W32 Remove “_export” from the definition of GenDlgProc().

address.h 78 W32 Remove “far” from the definition of FileOpen().

address.cpp 31-44 W32 Remove these lines. There is no Win32 equivalent for
activating a previous instance of a program.

dialog.cpp 9 O Remove the line

#include <commdlg.h>

because common dialogs are standard in <os2win.h>.

dialog.cpp 41 W32 Replace

return OnCommand ((int)WParam, (HWND)LOWORD (LParam),
HIWORD (LParam));

with its Win32 equivalent

return OnCommand (LOWORD(WParam), (HWND) (LParam),
HIWORD (WParam));

dialog.cpp 44 W32 Replace WM_CTLCOLOR with WM_CTLCOLORDLG.

238 Open32 for OS/2 Warp

Table 13 (Page 2 of 4). Changes to the Address Source Files

File Line Reason Description of change

dialog.cpp 256 O Replace

HWnd = FindWindow (0, "Phone Dialer");

with

HWnd = FindWindow ("", "Phone Dialer");

dialog.cpp 274 O Replace

HWnd = FindWindow (0, "Phone Dialer");

with

HWnd = FindWindow ("", "Phone Dialer");

dialog.cpp 446 O Replace

HWnd = FindWindow (0, "Envelope & Label Printer");

with

HWnd = FindWindow ("", "Envelope & Label Printer");

dialog.cpp 464 O Replace

HWnd = FindWindow (0, "Envelope & Label Printer");

with

HWnd = FindWindow ("", "Envelope & Label Printer");

dialog.cpp 550 O Insert the following lines before the call to
GetPrivateProfileInt():

HMENU mHMenu;
mHMenu = LoadMenu(App.mHInstCurrent, "ADDRESSMENU");
SetMenu(mHDialog, mHMenu);

dialog.cpp 757 W32 Replace

switch(WParam)

with its Win32 equivalent

switch(LOWORD(WParam))

dialog.cpp 765 W32 Replace

if (HIWORD (LParam) == EN_CHANGE)

with its Win32 equivalent

if (HIWORD (WParam) == EN_CHANGE)

wclasses.cpp 18 W32 Remove “_export” from the definition of GenDlgProc().

wclasses.cpp 76 W32 Remove “_export” from the definition of MessageProc().

Chapter 8. Existing Windows 16-bit Application Ported to OS/2 239

Table 13 (Page 3 of 4). Changes to the Address Source Files

File Line Reason Description of change

wclasses.cpp 167 W32 Replace

GetCurrentTask ()

with its Win32 equivalent

GetCurrentThreadId ()

wclasses.cpp 177 W32 Remove far from the type cast of this.

wclasses.cpp 230 W32 Remove far from the type cast of this.

document.cpp 22 W32 Remove the line

_fmode = O_BINARY;

document.cpp 109-110 W32 Replace the call to OpenFile() with

DeleteFile(TempFileStruct.szPathName);

document.cpp 113 C Replace the definition of TempFileName with

char *TempFileName;

document.cpp 114 C Replace

mktemp (TempFileName);

with

TempFileName = tmpnam(NULL);

document.cpp 118-121 W32 Replace the call to OpenFile() with

HTempFile = open(TempFileName, O_CREAT | O_RDWR |
O_BINARY, S_IWRITE);

strcpy(TempFileStruct.szPathName, TempFileName);

document.cpp 128 W32 Remove “_far” from the declaration of
CDocument::FileOpen.

document.cpp 137-140 W32 Replace the call to OpenFile() with

HFILE HPermFile = open(FileName, O_RDONLY | O_BINARY,
S_IWRITE);

strcpy(PermFileStruct.szPathName, FileName);

document.cpp 154-155 W32 Replace the call to OpenFile() with

DeleteFile(TempFileStruct.szPathName);

document.cpp 158 C Change the definition of TempFileName to

char *TempFileName;

document.cpp 159 C Replace the line

mktemp (TempFileName);

with

TempFileName = tmpnam(NULL);

240 Open32 for OS/2 Warp

Table 13 (Page 4 of 4). Changes to the Address Source Files

File Line Reason Description of change

document.cpp 163-166 W32 Replace the call to OpenFile() with

HTempFile = open(TempFileName, O_CREAT | O_RDWR |
O_BINARY, S_IWRITE);

strcpy(TempFileStruct.szPathName, TempFileName);

document.cpp 177 W32 Replace the call to _lclose() with

close (HPermFile);

document.cpp 211-212 W32 Replace the call to OpenFile() with

HPermFile = open(PermFileStruct.szPathName, O_CREAT |
O_WRONLY | O_BINARY, S_IWRITE);

document.cpp 216-217 W32 Replace the call to OpenFile() with

HPermFile = open(FileName, O_CREAT | O_WRONLY |
O_BINARY, S_IWRITE);

document.cpp 258 W32 Replace the call to _lclose() with

close (HPermFile);

document.cpp 605-606 W32 Replace the lines

GetDlgItemText (MainDialog.mHDialog, IDC_PHONES,
Phones, Size);

with

if (Size==1) {
*Phones = 0;

} else {
GetDlgItemText (MainDialog.mHDialog,

IDC_PHONES, Phones, Size);
} /* endif */

document.cpp 615 W32 Replace the line

GetDlgItemText (MainDialog.mHDialog, IDC_NOTES,
Notes, Size);

with

if (Size==1) {
*Notes = 0;

} else {
GetDlgItemText (MainDialog.mHDialog,

IDC_NOTES, Notes, Size);
} /* endif */

document.cpp 644-645 W32 Replace the call to OpenFile() with

DeleteFile(TempFileStruct.szPathName);

Chapter 8. Existing Windows 16-bit Application Ported to OS/2 241

8.2.1.1 General Changes
Several of the changes involve simply removing far or _export from the
definition of a function or type cast. Both of these changes are standard in
moving a Windows 16-bit application to Win32.

8.2.1.2 Changes to ADDRESS.CPP
Lines 31 through 44 of the original source are executed only if a previous
instance of the Address Manager is already running in the system. It uses
the Win16 function GetInstanceData(), for which there is no apparent Win32
equivalent. Without any way to retrieve the window handle of the previous
instance, the program cannot bring it to the top of the z-order. As such, it
cannot ensure that only one instance of the program is running. By
removing all of lines 31 through 44, the program changes to allow numerous
instances of the program to run at once.

8.2.1.3 Changes to DIALOG.CPP
The first group of changes to DIALOG.CPP deal with changes to the use of
wParam and lParam between Win16 and Win32. Microsoft changed wParam
and lParam for Win32 because of two other changes involved in moving to a
32-bit operating system:

• The size of HWND was increased to 32 bits.
• The size of WPARAM was increased to 32 bits (a WORD is now the

same size as a long integer).

The second group of changes concerns the four calls to FindWindow(). The
first parameter of the function call specifies the class name, if any, of the
window to locate. It is permissible to pass zero to the function under Win32,
but not under Open32. Open32 apparently attempts to access the memory
location pointed to by the string pointer before validating the address.
Therefore, passing zero causes Open32 to try to access memory location
0x00000000, which is reserved. By passing a null string, FindWindow() will
access a valid piece of memory.

On line 550, three lines of code need to be inserted to set the dialog's menu.
While Windows allows you to specify the menu for a dialog box in the
Resource Compiler file, OS/2 requires that a menu be attached to a dialog
during execution. For this reason, the menu is loaded and set during
program initialization by these three lines of code.

8.2.1.4 Changes to DOCUMENT.CPP
Many of the changes in DOCUMENT.CPP deal with replacing the OpenFile()
function. While Open32 supports the standard function OpenFile(), it
unfortunately supports the call exactly as Win32 does. Neither system
honors the _fmode global variable to determine whether files should be

242 Open32 for OS/2 Warp

opened in binary or text mode. The Open32 include files do not even define
the variable, which causes a compiler error to be generated on line 22 of
DOCUMENT.CPP. Under Windows NT or Windows 95, Microsoft Visual
C++ will compile the code without error, but the program will not function
correctly.

Since the address program must access files using binary mode, the calls to
OpenFile() must be changed. While the Win32 function CreateFile() could be
used, using it would require extensive changes to the file because its file
handle cannot be used with read() or write(). Files opened with CreateFile()
must be accessed using ReadFile() and WriteFile().

The decision was made to instead use the standard C library function
open(). Since open() does not use the FILESTRUCT structure, the filename
must be copied to it using strcpy(). All of these changes are noted in
Table 13 on page 238.

8.2.2 Converting the Resource Compiler File
After the source files are modified, you should convert the Resource
Compiler file to OS/2 format using SMART. Be sure to specify Support
String ID.

After SMART converts the Resource Compiler file, you will still need to
make a small change to the resource script. The About dialog box contains
the application's icon. This is a common practice in About dialog boxes for
Windows applications. The problem, however, is that OS/2 cannot load a
dialog box which contains an icon with a string ID. For this reason, the icon
cannot have a string ID.

There are three possible solutions to this problem:

1. Duplicate the definition of the icon in the resource script and give it a
numeric ID which is used in the dialog box. This, however, will create
two identical copies of the icon in the application's executable file,
wasting approximately 1 kilobyte.

2. Give the icon a numeric ID and change the source code when it
references the icon. While this option eliminates the duplicate icon, it
requires a change to the source code and leaves the application in
something of a resource ID limbo; some identifiers are string, some are
numeric.

3. Reconvert the resource script using SMART, only this time without
Support String ID. When SMART finds a string ID in the resource file, it
will automatically assign a numerical identifier to it and put the definition
in a .HHH file. You can then include the .HHH file in the program and

Chapter 8. Existing Windows 16-bit Application Ported to OS/2 243

use the new numeric IDs. However, this requires that you modify every
line of code which references a resource.

For an example program like Address, it is easiest to just duplicate the icon
and change the reference in the About box definition (Option 1 above). For
major applications, it may be better to invest the time and effort of
converting all string IDs to numeric IDs (option 3 above).

To change the Resource Compiler file, duplicate line 152 in ADDRESS.RC
and change ADDRESSICON to a number, as shown in Figure 195.

147: ///
148: //
149: // Icon
150: //
151:
152: ICON "ADDRESSICON" DISCARDABLE "ADDRESS.ICO"
153: ICON 1001 DISCARDABLE "ADDRESS.ICO"

Figure 195. ADDRESS.RC: Changes to ADDRESSICON

After you duplicate the icon statement, change the definition of the About
box, ABOUTDLG, to use the second icon. Edit line 99, as shown in
Figure 196.

91: DLGTEMPLATE "ABOUTDLG" DISCARDABLE
92: BEGIN
93: DIALOG "About", -1, 15, 183, 145, 100,
94: WS_VISIBLE | FS_DLGBORDER | FS_SCREENALIGN,
95: FCF_TITLEBAR | FCF_SYSMENU | FCF_NOMOVEWITHOWNER
96: BEGIN
97: CTEXT "Windows Address Manager",-1, 0, 82, 145, 8, SS_TEXT |

DT_WORDBREAK | DT_MNEMONIC
98: CTEXT "by Michael J. Young", -1, 0, 64, 145, 8, SS_TEXT |

DT_WORDBREAK | DT_MNEMONIC
99: ICON 1001, -1, 60, 36, 20, 16
100: DEFPUSHBUTTON "OK", DID_OK, 45, 6, 50, 14
101: END
102: END

Figure 196. ADDRESS.RC: Changes to ABOUTDLG

You should also modify the definition of the main dialog, MAINDLG, to
include FCF_TASKLIST in its series of FCF_ constants. This will
automatically add the Address Manager to the task list while it is running.
The dialog height also needs to be adjusted to allow room for the menu at
the top of the dialog. A proper height is 195 dialog units, as highlighted in
Figure 197 on page 245.

244 Open32 for OS/2 Warp

43: DLGTEMPLATE "MAINDLG" DISCARDABLE
44: BEGIN
45: DIALOG "Address Manager", -1, 0, 122, 222, 195,
46: WS_VISIBLE | FS_BORDER | FS_SCREENALIGN,
47: FCF_TITLEBAR | FCF_SYSMENU | FCF_MINBUTTON | FCF_NOMOVEWITHOWNER | FCF_TASKLIST
48: BEGIN

Figure 197. Changes to ADDRESS.RC

8.2.3 Converting Graphical Resources
After the Resource Compiler file is converted, you should use SMART to
convert the graphical resources for Address. The program's resource file
only has one icon, ADDRESS.ICO, to convert. However, there are also two
bitmaps, HELP01.BMP and HELP02.BMP, which need to be converted before
the help file can be translated. You should use SMART to convert all three
files to OS/2 format. See 3.1.4, “Converting Resource Compiler Files” on
page 83 for information on using SMART to convert icons and bitmaps.

8.3 Converting the Help File

You also need to convert the program's help file. The Windows version of
the help file is in RTF format, which SMART can convert into OS/2's IPF
format. From the SMART main window, select Translate Win Help..., as
shown in Figure 198.

.

Figure 198. Selecting "Translate Win Help..." in SMART

The Win Help Translator dialog box will appear, as shown in Figure 199 on
page 246. Use the Select... pushbuttons to specify the source and target

Chapter 8. Existing Windows 16-bit Application Ported to OS/2 245

files. The output of the translator will be an OS/2 binary .HLP file. If you
want the source IPF file to be created also, select the Do Not Delete IPF file
check box.

After you have select the input and output files, select the OK button and
SMART will convert the help file.

Figure 199. Win Help Translator Dialog Box

8.3.1 Creating a New Makefile
The process of recompiling the source files and resources will be made
much easier by using NMAKE, the OS/2 Program Maintenance Utility. A
makefile for the converted program is shown in Figure 200 on page 247.

246 Open32 for OS/2 Warp

#
MAKEFILE: for Address Manager sample
#
ALL: address.exe

.rc.res:
rc.exe -r %s

.CPP.obj:
icc.exe /Gh /Ti /Tm /C %s

.C.obj:
icc.exe /Ss /Gh /Ti /Tm /C %s

address.exe: address.obj dialog.obj document.obj \
wclasses.obj main.obj address.res

ilink /DEBUG address.obj main.obj document.obj \
wclasses.obj dialog.obj pmwinx.lib address.def

rc.exe address.res address.exe

address.res: address.rc resource.h
document.obj: document.cpp address.h wclasses.h resource.h
dialog.obj: dialog.cpp address.h wclasses.h resource.h
address.obj: address.cpp address.h wclasses.h resource.h
wclasses.obj: wclasses.cpp wclasses.h
main.obj: main.c

Figure 200. Makefile for OS/2

8.3.2 Creating the DEF File
A link definitions file is required by ILINK to define the application type and
stack size. A sample DEF file is shown in Figure 201. You should create
the file before building the application.

;;;
; ;
; ADDRESS.DEF: Module-definition file for the ADDRESS ;
; program. ;
; ;
;;;

NAME ADDRESS WINDOWAPI
DESCRIPTION 'Address Manager'
STACKSIZE 65536

Figure 201. ADDRESS.DEF

8.3.3 Creating the Executable

Chapter 8. Existing Windows 16-bit Application Ported to OS/2 247

After the source code and resources have been adapted to OS/2, you are
ready to run NMAKE and build the application's executable file. Figure 202
on page 248 shows the output of the build process.

[D:\open32\address\migrate]nmake

Operating System/2 Program Maintenance Utility
Version 3.00.008 May 9 1995
Copyright (C) IBM Corporation 1988-1995
Copyright (C) Microsoft Corp. 1988-1991
All rights reserved.

icc.exe /Gh /Ti /Tm /C address.CPP
IBM VisualAge C ++ for OS/2, Version 3
(C) Copyright IBM Corp. 1991, 1995.
- Licensed Materials - Program Property of IBM - All Rights Reserved.

icc.exe /Gh /Ti /Tm /C dialog.CPP
IBM VisualAge C ++ for OS/2, Version 3
(C) Copyright IBM Corp. 1991, 1995.
- Licensed Materials - Program Property of IBM - All Rights Reserved.

icc.exe /Gh /Ti /Tm /C document.CPP
IBM VisualAge C ++ for OS/2, Version 3
(C) Copyright IBM Corp. 1991, 1995.
- Licensed Materials - Program Property of IBM - All Rights Reserved.

icc.exe /Gh /Ti /Tm /C wclasses.CPP
IBM VisualAge C ++ for OS/2, Version 3
(C) Copyright IBM Corp. 1991, 1995.
- Licensed Materials - Program Property of IBM - All Rights Reserved.

icc.exe /Ss /Gh /Ti /Tm /C main.C
IBM VisualAge C ++ for OS/2, Version 3
(C) Copyright IBM Corp. 1991, 1995.
- Licensed Materials - Program Property of IBM - All Rights Reserved.

H:\TOOLKIT\H\os2win.h(14:4) : warning EDC0523: Obsolete #pragma checkout ignored
. Use #pragma info or the /W options.

rc.exe -r address.rc
Operating System/2 Resource Compiler
Version 3.01.002 Mar 12 1996
(C) Copyright IBM Corporation 1988-1996
(C) Copyright Microsoft Corp. 1985-1996
All rights reserved.

Creating binary resource file address.RES
RC: RCPP -E -D RC_INVOKED -W4 -f address.rc -ef H:\IBMCPP\BIN\RCPP.ERR -I H:\IB
MCPP\INCLUDE -I H:\IBMCPP\INCLUDE\OS2 -I H:\IBMCPP\INC -I H:\IBMCPP\INCLUDE\SOM
-I H:\TOOLKIT\BETA\H -I H:\TOOLKIT\SOM\INCLUDE -I H:\TOOLKIT\H -I H:\TOOLKIT\INC
-I F:\TOOLKIT\BETA\H -I F:\TOOLKIT\SOM\INCLUDE -I F:\TOOLKIT\H -I . -I F:\TOOLK
IT\INC

Figure 202 (Part 1 of 2). Output of NMAKE During Application Build

248 Open32 for OS/2 Warp

address.rc........
ilink /DEBUG address.obj main.obj document.obj wclasses.obj dialog.obj

pmwinx.lib address.def

IBM(R) Linker for OS/2(R), Version 01.00.05
(C) Copyright IBM Corporation 1988, 1995.
(C) Copyright Microsoft Corp. 1988, 1989.
- Licensed Material - Program-Property of IBM - All Rights Reserved.

rc.exe address.res address.exe
Operating System/2 Resource Compiler
Version 3.01.002 Mar 12 1996
(C) Copyright IBM Corporation 1988-1996
(C) Copyright Microsoft Corp. 1985-1996
All rights reserved.

Reading binary resource file address.res

Writing resources to OS/2 v2.0 Linear .EXE file
Writing 2 DEMAND resource object(s)
Writing: 4060 bytes in 1 page(s)
302.1 (874 bytes)
1001.1 (874 bytes)
63788.3 (521 bytes)
70.4 (299 bytes)
60153.4 (224 bytes)
64825.4 (250 bytes)
64835.4 (983 bytes)
65002.8 (22 bytes)

Writing: 120 bytes in 1 page(s)
8.255 (21 bytes)
4.255 (53 bytes)
3.255 (20 bytes)
1.255 (20 bytes)

Writing 681 bytes of module format directive

[D:\open32\address\migrate]

Figure 202 (Part 2 of 2). Output of NMAKE During Application Build

8.3.4 Running Address
After the executable is built and the help file is converted, you are ready to
run the new copy of Address for OS/2. The main Address window is shown
in Figure 203 on page 250 running under OS/2 Warp Version 4.

Chapter 8. Existing Windows 16-bit Application Ported to OS/2 249

Figure 203. Address Main Dialog under OS/2

Note

As compiled, Address will not run under OS/2 Warp with the Developer
API Extensions from The Developer Connection for OS/2 Volume 10, due
to bugs in Release 1.0 of Developer API Extensions. The screen shot in
Figure 203 is from OS/2 Warp Version 4. To run Address on OS/2 Warp
with Developer API Extensions from The Developer Connection for OS/2
Volume 10, you must comment out all of the lines pertaining to
Address's private profile data. A copy of the Address program with
these changes made is provided on the CD accompanying this book in
the ADDRESS WARP3 directory.

250 Open32 for OS/2 Warp

Chapter 9. Hints and Tips for Open32

This chapter describes several items to consider when designing,
developing and coding applications from a common source base for
execution in both the OS/2 and Win32 environments.

Unfortunately, many applications use at least one feature which is
unsupported by Open32. In the rest of this chapter, we will discuss some of
the lessons we learned in developing the sample applications for this
redbook.

9.1 General Design Hints and Tips

The cost of developing and maintaining advanced graphical applications is
often very high. Attempting to maintain an application on two platforms only
adds to the cost (although this is usually offset by the increased market).
Open32 greatly reduces the cost of dual-platform development and
maintenance, and by judicious planning the cost can approach zero. The
following general guidelines will result in decreased cost:

• Maximize the common code

• Minimize the dependent code

• Put general program code in the common code and interface details in
the dependent code. Changes to the program are thus more likely to be
in common code.

• Use low-maintenance techniques, such as the translation control (see
Chapter 7, “Tree View Control Sample Program” on page 195).

9.1.1 New Program Design Hints & Tips
Windows 32-bit applications are easiest to migrate using Open32 when they
use only the supported APIs and window classes. They require practically
no changes to the source code, and the resources need only to be
converted by SMART. In truth, any application, which uses only supported
APIs, window classes, and resources can be migrated to OS/2 as easily as
Howdy, regardless of size (See Chapter 3, “Howdy, World!” on page 79).

Therefore, the key to writing new Windows 32-bit applications for migration
using Open32 is to maximize the common source code. If you do need to
use common controls or unsupported APIs, early planning can save you a
lot of time later in the project. When designing a new application which
uses Win32 features that are not supported by Open32, keep the following in
mind:

 Copyright IBM Corp. 1996 251

1. Identify unsupported features as early in the design as possible.

2. Decide how they will be accomodated.

• Mix mode programming is generally more flexible (it allows features
in OS/2 but not Win32 to be exploited), but it is also somewhat more
cumbersome to use. The continuing development costs of mix mode
programming are also higher than translation programming because
two separate source codes must be maintained.

• In comparison, translation programming allows an application to
remain entirely common source but requires that OS/2 offer a
similar feature to Win32, and it restricts the use of the OS/2 features
to what Win32 offers. If, however, a complete translation feature
already exists (for example, from a previous project), then it is
probably the best solution. Reusing a translation feature costs
essentially nothing, but writing a new one can be a substantial
investment, depending on the complexity of the feature.

3. Decide how cross-platform help will be maintained before writing any of
it.

• IBM's Hyperwise allows the creation of a common help source for
both Windows and OS/2 applications. However, its support for
Windows help is through a special interface, not through the
standard Windows help interface.

• SMART offers an RTF-to-HLP conversion, allowing the help to be
maintained for Windows and converted for OS/2. However, Open32
does not support all of the WinHelp() commands.

9.1.2 Existing Program Migration Hints and Tips
Existing programs can take only minimal effort or a substantial investment
to migrate, depending on their current structure and feature use. Generally,
the more features a program uses which are not directly supported by
Open32, the more work it will take to migrate.

Mix mode programming is usually not a viable option for an existing
application because it usually requires a redesign of the application's
coding structure. Any code which interacts with the unsupported features
must be extracted from the common code and isolated in dependent files.

We recommend translation programming for existing applications wherever
it is available. Translation programming lets the application's primary
source code remain intact while a special interface layer between it and
OS/2 is added. The drawback with translation programming is that writing
the translation code can be expensive because the programmer must have

252 Open32 for OS/2 Warp

both Windows and OS/2 experience. Depending on the feature, translation
code can also be very complex.

9.1.3 General Coding Hints and Tips
There are only a few considerations which programmers need to remember
when working with Win32/Open32 programs. The following list summarizes
the hints we have after working with Open32.

• Use ULONGs for 32-bit values which need to be accessed by both Win32
and OS/2 code. Often it is impractical to use the actual definition
because it exists in only one environment. For example, MPARAM
exists only in OS/2 programming.

• If OS/2 code needs to call a Win32 function, create a function in the
Win32 source to call it. (See 7.1.2, “How the OS/2 Tree View Control is
Written” on page 198)

Chapter 9. Hints and Tips for Open32 253

254 Open32 for OS/2 Warp

Appendix A. Common Problems and Easy Solutions

While Open32 certainly makes migrating your Win32 application to OS/2
much easier, many problems can still come up during the process. It is
easy to forget one step or forget to modify one line of code. In this section
you will find solutions to some of the more common programming missteps
and mistakes in working with Open32.

A.1 Compiler Errors

There are only a few compiler errors which might come up in migrating an
Open32 application. The most important step, of course, is to replace

#include <windows.h>

with

#include <os2win.h>

in all of your source files. If you forget to do this, the compiler will not
recognize any of the Win32 data types or functions.

A.1.1 SYS1041: The name specified is not recognized
This error is a general OS/2 system error which indicates the given program
could not be found. When compiling Open32 programs, this may indicate
that you are not using the correct compiler name.

A.1.1.1 Problem
Operating System/2 Program Maintenance Utility
Version 3.00.008 May 9 1995
Copyright (C) IBM Corporation 1988-1995
Copyright (C) Microsoft Corp. 1988-1991
All rights reserved.

cl /c howdy.c
SYS1041: The name specified is not recognized as an
internal or external command, operable program or batch file.
NMAKE : fatal error U1077: 'G:\OS2\CMD.EXE' : return code '104
Stop.

A.1.1.2 Solution
You are using the wrong compiler name and need to change its definition in
your makefile. VisualAge C++ is executed at the command line, in this
case, by:

icc /c /Ss howdy.c

 Copyright IBM Corp. 1996 255

See the VisualAge C++ documentation for information on command line
options.

A.1.2 Errors in Compiling <OS2WIN.H>
If the compiler generates numerous errors when attempting to compile
<OS2WIN.H>, you may have forgotten an important command line switch.
You must specify the command line option /Ss so that the compiler will
accept the double slash (//) as a one-line comment. While the double slash
is not defined in standard C, <OS2WIN.H> header file uses it frequently.

A.2 Linker Errors

A.2.1 Obsolete #pragma Warning
When compiling C files which include <os2win.h>, you may get the following
warning:

H:\TOOLKIT\H\os2win.h(14:4) : warning EDC0523: Obsolete #pragma checkou
ignored. Use #pragma info or the /W options.

This message can be safely ignored.

A.2.2 L1104: not valid library
With VisualAge C++ Version 3.0, IBM included a new linker, ILINK. If you
get either of the following error messages, you need to change your linker.

A.2.2.1 Problem
LINK386 : fatal error L1104: H:\IBMCPP\LIB\cppos30.lib : not valid libr

or

LINK : fatal error L1104: H:\IBMCPP\LIB\cppos30.lib : not valid library

A.2.2.2 Solution
You must use the new linker, ILINK, to link your Developer API Extensions
application. You cannot use either Microsoft's Segmented-Executable
Linker nor the OS/2 Linear Executable Linker from previous toolkits.

A.2.3 Unresolved External on Win32 Functions
During the linkedit you receive unresolved external messages for the Win32
functions you use in your program.

A.2.3.1 Problem

256 Open32 for OS/2 Warp

howdy.obj(howdy.c) : error LNK2029: "UpdateWindow" : unresolved exte
howdy.obj(howdy.c) : error LNK2029: "RegisterClass" : unresolved ext
howdy.obj(howdy.c) : error LNK2029: "DefWindowProc" : unresolved ext
howdy.obj(howdy.c) : error LNK2029: "GetClientRect" : unresolved ext
howdy.obj(howdy.c) : error LNK2029: "GetStockObject" : unresolved ex
howdy.obj(howdy.c) : error LNK2029: "CreateWindowEx" : unresolved ex
howdy.obj(howdy.c) : error LNK2029: "TranslateMessage" : unresolved
howdy.obj(howdy.c) : error LNK2029: "DispatchMessage" : unresolved e
howdy.obj(howdy.c) : error LNK2029: "PostQuitMessage" : unresolved e
howdy.obj(howdy.c) : error LNK2029: "LoadIcon" : unresolved external
howdy.obj(howdy.c) : error LNK2029: "EndPaint" : unresolved external
howdy.obj(howdy.c) : error LNK2029: "DrawText" : unresolved external
howdy.obj(howdy.c) : error LNK2029: "BeginPaint" : unresolved extern
howdy.obj(howdy.c) : error LNK2029: "MessageBox" : unresolved extern
howdy.obj(howdy.c) : error LNK2029: "LoadCursor" : unresolved extern
howdy.obj(howdy.c) : error LNK2029: "GetMessage" : unresolved extern
howdy.obj(howdy.c) : error LNK2029: "ShowWindow" : unresolved extern

A.2.3.2 Solution
You must specify PMWINX.LIB as a library to ILINK so that it can properly
connect your Developer API Extensions function calls to the Developer API
Extensions dynamic link libraries. Simply add PMWINX.LIB as a parameter
to ILINK to resolve this problem.

A.2.4 LNK4021: no stack segment
During the linkedit you receive no stack segment messages.

A.2.4.1 Problem
ILink : warning LNK4021: no stack segment
ILink : warning LNK4071: application type not specified; assuming WIN

A.2.4.2 Solution
You must create a link definition file for your application. The DEF file must
at least contain statements naming the application's name, application type,
and stack size. See Figure 96 on page 90 for an example.

A.2.5 LNK4038: program has no starting address
During the linkedit you receive the program has no starting address
message.

A.2.5.1 Problem
ILink : error LNK4038: program has no starting address

There was 1 error detected

Appendix A. Common Problems and Easy Solutions 257

A.2.5.2 Solution
You must add MAIN.C from \TOOLKIT\SAMPLES\DAPIE\WINMAIN to your
application, compile it, and link it in. It contains the start-up procedure
main() as required by OS/2. See Section 3.1, “Overview of the Migration
Process” on page 79.

A.3 Resource Compiler Errors

The only errors that may come up with resources and the Resource
Compiler are caused by not converting the source files to OS/2 format with
SMART. This is a very important step because Win32 and OS/2 resource
files have completely different formats.

If resource compiler works fine but a graphical resource, such as an icon or
a bitmap, does not appear in the application, it is probably because the file
has not been converted. Converting graphical resources is a separate step
from translating the resource file. The Resource Compiler will not return an
error if the icon or bitmap is in Win32 format.

Also note, if a dialog box contains an icon which it cannot load properly, the
dialog box may not appear. If you are having problems with dialog boxes
that refuse to open, try removing any icons or other resources which may
be blocking the dialog's function.

A.3.1 Undefined Keyword or Keyname

A.3.1.1 Problem
The Resource Compiler won't compile converted files. It returns errors such
as “undefined keyword or keyname.”

A.3.1.2 Solution
Add the statement:

#include <os2.h>

to the top of your Resource Compiler file. The Resource Compiler does not
natively know the definitions for virtual keys or other constants; it must read
them from the standard header files. Note, however, that since resources
are not translated at run-time by Developer API Extensions, you cannot
include <os2win.h>. The constant definitions differ between OS/2 and Win32,
so including <os2win.h> in your resource file may cause unpredictable
results. Accelerator keys, for example, will either not work at all, or they
will activate the wrong accelerator.

258 Open32 for OS/2 Warp

A.4 Run-Time Errors

For the most part, run-time errors do not occur. IBM's high quality
development tools detect code that could cause a problem during execution.
However, there are a few things which seem innocent enough but which
actually cause severe errors.

A.4.1 Program won't load, PMWINX.DLL Access Violation Error
Figure 204 shows the System Error panel which will be displayed when a
run-time error occurs for an Open32 program.

Figure 204. Run-Time Error Message at Program Startup

Figure 205 on page 260 shows the System Error detail panel which can be
displayed when the Display register information option is chosen and the
OK pushbutton is selected from the System Error panel shown in
Figure 204.

Appendix A. Common Problems and Easy Solutions 259

Figure 205. Detailed Information on Run-Time Error

A.4.1.1 Problem
During program startup, OS/2 reports a system error, as shown in
Figure 204 on page 259. On the details page (Figure 205), OS/2 shows that
PMWINX.DLL encountered a SYS3175 error which is a program access
violation in the program PMWINX.DLL.

A.4.1.2 Solution
There are several possible causes of this message. The most likely is that
the stacksize of your application is too small. Check your link definitions
(DEF) file and make sure the statement:

STACKSIZE 65536

is in the file. The number following STACKSIZE is the size of the program's
stack in bytes. For Open32 applications, the stack must be at least 65536;
smaller values may cause run-time errors.

Another probable case of the problem is your resource file. If you changed
from string IDs to integer IDs, you may not have caught every instance of a
string ID in your program code. A stray call to LoadIcon() or LoadMenu()
with a string ID can cause a program crash if the resource does not exist

260 Open32 for OS/2 Warp

under the name given. Check your C source code and make sure you use
the MAKEINTRESOURCE() macro for all integer IDs.

The problem can also be caused by assigning any resource an ID of 1.
When OS/2 attempts to use any such resource (not necessarily when
loading it), it will cause a memory violation. Assign the resource another
ID.

A.4.2 Dialog Boxes don't Work

A.4.2.1 Problem
If the dialog box contains an icon or a bitmap, it may be causing a problem.
Under Win32, a dialog box which contains a resource that cannot be loaded
is loaded and executed without the resource. Under OS/2, the dialog box
will not load unless all of its component parts also load properly.

A.4.2.2 Solution
Most likely, the ID of the icon in the dialog box does not match a valid icon
ID in the resource file. Check to make sure the IDs match.

There is a known problem that a dialog box containing an icon which has a
string ID will not load and execute properly under OS/2. You must change
the string ID of the icon to an integer.

If the problem continues, try commenting out the definition of the icon. If the
dialog box then works, you know for sure that OS/2 is having a problem
locating and loading the icon. The icon may not have been converted from
Win32 format. If this is the case, use the SMART tool to convert it. See
3.1.4, “Converting Resource Compiler Files” on page 83 for complete
details.

A.4.3 Icons or Bitmaps Don't Show

A.4.3.1 Problem
Graphical items such as icons or bitmaps which are bound to the executable
using the Resource Compiler do not appear when drawn by the application
using DrawIcon() or BitBlt().

A.4.3.2 Solution
This problem may have several different causes. The most likely is that the
icon or bitmap has not been converted to OS/2 format. That format differs
slightly from the format used in Windows. If you have not used SMART or a
similar tool to convert the bitmap or icon to OS/2 format, you need to do so.

Appendix A. Common Problems and Easy Solutions 261

If the file is in OS/2 format and problems persist, check to see if the
resource ID matches between the Resource Compiler file and your program
source code. If you are using string IDs, the name must be in double quotes
(“”). If you are using numeric IDs, you must use the MAKEINTRESOURCE()
macro.

262 Open32 for OS/2 Warp

Appendix B. Special Notices

This publication is intended to help application developers and IBM
technical personnel who are interested in building C/C++ applications that
utilize Open32 of OS/2 Warp. The information in this publication is not
intended as the specification of any programming interfaces that are
provided by OS/2 Warp or Win32.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM's product, program, or service may
be used. Any functionally equivalent program that does not infringe any of
IBM's intellectual property rights may be used instead of the IBM product,
program or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject
matter in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to
the IBM Director of Licensing, IBM Corporation, 500 Columbus Avenue,
Thornwood, NY 10594 USA.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the
mutual use of the information which has been exchanged, should contact
IBM Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
("vendor") products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer's ability to evaluate and
integrate them into the customer's operational environment. While each
item may have been reviewed by IBM for accuracy in a specific situation,
there is no guarantee that the same or similar results will be obtained

 Copyright IBM Corp. 1996 263

elsewhere. Customers attempting to adapt these techniques to their own
environments do so at their own risk.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

PC Direct is a trademark of Ziff Communications Company and is
used by IBM Corporation under license.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Microsoft, Windows and the Window 95 logo are trademarks or
registered trademarks of Microsoft Corporation.

Java and HotJava are trademarks of SUN Microsystems, Inc.

Other trademarks are trademarks of their respective companies.

BookManager Hyperwise
IBM OS/2
Presentation Manager SOM
System Object Model VisualAge
Workplace Shell

SMART One Up Corporation
OpenDoc Apple Computers, Inc.
Visual C++ Microsoft Corporation
SmallTalk Digitalk, Inc.
C++ AT&T, Inc.

264 Open32 for OS/2 Warp

Appendix C. Related Publications

The publications listed in this section are considered particularly suitable for
a more detailed discussion of the topics covered in this redbook.

C.1 International Technical Support Organization Publications

For information on ordering these ITSO publications see “How To Get ITSO
Redbooks” on page 267.

• VisualAge: Concepts and Features, GG24-3946

• Object-Oriented Application Development with VisualAge, GG24-4227

C.2 Redbooks on CD-ROMs

Redbooks are also available on CD-ROMs. Order a subscription and
receive updates 2-4 times a year at significant savings.

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177
Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022
Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038
AS/400 Redbooks Collection SBOF-7270 SK2T-2849
RISC System/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040
RISC System/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041
Application Development Redbooks Collection SBOF-7290 SK2T-8037
Personal Systems Redbooks Collection SBOF-7250 SK2T-8042

C.3 Other Publications

These publications are also relevant as further information sources:

• Designing OS/2 Applications, ISBN-0-471-58889-X

• OS/2 Warp Presentation Manager Mentor: Foundations of PM
Programming, ISBN-0-471-13167-9

• Mastering Windows Utilities Programming with C++,
ISBN-0-7821-1286-2

• Win32 API Desktop Reference, ISBN-0-672-30364-7

• Windows 95 Common Controls & Message API Bible, ISBN-1-57169-101-7

 Copyright IBM Corp. 1996 265

266 Open32 for OS/2 Warp

How To Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks,
CD-ROMs, workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The
latest information may be found at URL http://www.redbooks.ibm.com.

How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and
information about redbooks, workshops, and residencies in the following ways:

• PUBORDER — to order hardcopies in United States

• GOPHER link to the Internet - type GOPHER.WTSCPOK.ITSO.IBM.COM

• Tools disks

To get LIST3820s of redbooks, type one of the following commands:

TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get lists of redbooks:

TOOLS SENDTO WTSCPOK TOOLS REDBOOKS GET REDBOOKS CATALOG
TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT
TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET LISTSERV PACKAGE

To register for information on workshops, residencies, and redbooks:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1996

For a list of product area specialists in the ITSO:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ORGCARD PACKAGE

• Redbooks Home Page on the World Wide Web

http://w3.itso.ibm.com/redbooks

• IBM Direct Publications Catalog on the World Wide Web

http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may obtain LIST3820s of redbooks from this page.

• REDBOOKS category on INEWS

• Online — send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

• Internet Listserver

With an Internet E-mail address, anyone can subscribe to an IBM Announcement Listserver. To
initiate the service, send an E-mail note to announce@webster.ibmlink.ibm.com with the keyword
subscribe in the body of the note (leave the subject line blank). A category form and detailed
instructions will be sent to you.

 Copyright IBM Corp. 1996 267

How Customers Can Get ITSO Redbooks

Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and
information about redbooks, workshops, and residencies in the following ways:

• Online Orders (Do not send credit card information over the Internet) — send orders to:

• Telephone orders

• Mail Orders — send orders to:

• Fax — send orders to:

• 1-800-IBM-4FAX (United States) or (+1) 415 855 43 29 (Outside USA) — ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

• Direct Services - send note to softwareshop@vnet.ibm.com

• On the World Wide Web

Redbooks Home Page http://www.redbooks.ibm.com
IBM Direct Publications Catalog http://www.elink.ibmlink.ibm.com/pbl/pbl

• Internet Listserver

With an Internet E-mail address, anyone can subscribe to an IBM Announcement Listserver. To
initiate the service, send an E-mail note to announce@webster.ibmlink.ibm.com with the keyword
subscribe in the body of the note (leave the subject line blank).

IBMMAIL Internet
In United States: usib6fpl at ibmmail usib6fpl@ibmmail.com
In Canada: caibmbkz at ibmmail lmannix@vnet.ibm.com
Outside North America: dkibmbsh at ibmmail bookshop@dk.ibm.com

United States (toll free) 1-800-879-2755
Canada (toll free) 1-800-IBM-4YOU

Outside North America (long distance charges apply)
(+45) 4810-1320 - Danish
(+45) 4810-1420 - Dutch
(+45) 4810-1540 - English
(+45) 4810-1670 - Finnish
(+45) 4810-1220 - French

(+45) 4810-1020 - German
(+45) 4810-1620 - Italian
(+45) 4810-1270 - Norwegian
(+45) 4810-1120 - Spanish
(+45) 4810-1170 - Swedish

IBM Publications
Publications Customer Support
P.O. Box 29570
Raleigh, NC 27626-0570
USA

IBM Publications
144-4th Avenue, S.W.
Calgary, Alberta T2P 3N5
Canada

IBM Direct Services
Sortemosevej 21
DK-3450 Allerød
Denmark

United States (toll free) 1-800-445-9269
Canada 1-403-267-4455
Outside North America (+45) 48 14 2207 (long distance charge)

268 Open32 for OS/2 Warp

IBM Redbook Order Form

Please send me the following:

Title Order Number Quantity

ΟPlease put me on the mailing list for updated versions of the IBM Redbook Catalog.

First name Last name

Company

Address

City Postal code Country

Telephone number Telefax number VAT number

Ο Invoice to customer number

Ο Credit card number

Credit card expiration date Card issued to Signature

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

DO NOT SEND CREDIT CARD INFORMATION OVER THE INTERNET.

How To Get ITSO Redbooks 269

270 Open32 for OS/2 Warp

List of Abbreviations

DDEML Dynamic Data Exchange
Management Library

DLL Dynamic Link Library

GDI Graphical Device
Interface

GPI Graphical Programming
Interface

IBM International Business
Machines Corporation

IPF Information Presentation
Facility

ITSO International Technical
Support Organization

MAPI Messaging Application
Programming Interface

MDI Multiple Document
Interface

NMHDR Notify Message Header

OLE Object Linking and
Embedding

RGB Red, Green, Blue

RTF Rich Text Format

SMART Source Migration
Analysis Reporting Tool

SOM System Object Model

TAPI Telephone Application
Programming Interface

ULON Unsigned Long Integer

URE Universal Resource
Editor

 Copyright IBM Corp. 1996 271

272 Open32 for OS/2 Warp

Index

Special Characters
/c (ICC switch) 83
/r (RC switch) 87
/Ss (ICC switch) 83
#ifdef (Preprocessor switch) 215

A
abbreviations 271
Accelerators 79, 95, 100
acronyms 271
Address Manager 235

Building 248
Changes to file handling 242
Migrating 236—249
Running 249
Structure 235

Application Design Consideration 8
Application enhancement for OS/2

Platform specific source code 168
Resource file 168
ValueSet control 168

B
bibliography 265

C
CApplication 236
CDocument 236
Client application coding

Close 188
Open 188
Receive 188
Send 188

CM_ALLOCRECORD 207
CM_INSERTRECORD 203
CMDialog 236
CMLDialog 236
CN_CONTEXTMENU 203, 205, 208
Command messages 201

Common controls 195
Common versus mixed mode 12
Compiler errors 255
Container control 198
Controls

Common 195
Container 198
Translation 195—233
Tree view 196

Convert Graphical Resources (in SMART) 86
CountRecords() 200
CQueue 236

D
DEF file, Creating 89
Developer API Extensions

Installing 70
Dialog boxes 79
Dialog Editor 101
Drawing functions

Bitmap 122
Capture screen image 128
Draw bitmap 122
Draw graphics 124
Draw text 125
Graphics 124
Migration 129
Text 125

E
Errors

Compiler 255
Linker 256
Resource Compiler 258
run-time 259

export 242

F
far 242

 Copyright IBM Corp. 1996 273

FindWindow() 242
FixPak 17 (XR_W017)

Installing 24
FS_SCREENALIGN 99

G
GetInstanceData() 242
Graphical Resources, Convert (in SMART) 86

H
Hints and Tips for Open32

Existing Program Migration 252
General Coding 253
New Programs 251

Howdy Sample Program 79
HTREEITEM, definition of 208
Hyperwise 7

I
ILINK 90
Image List (for OS/2) 210
InitCommonControls() 199, 215
InitTreeView() 199
Installing

Developer API Extensions 70
FixPak 17 (XR_W017) 24
OS/2 Warp Toolkit 31
SMART 47
The Developer Connection for OS/2 15
VisualAge C++ 57

K
Keyboard accelerators

See Accelerators

L
Linker errors 256
lParam, in TV_ITEM 208

M
Macro redefinition 94
MAIN.C 88
main() 88
Mapping Mask (in SMART) 84
Menu bar 79
Messages

Command 201
Notification 201

Migration
Unsupported API function classification 190
Unsupported API function coding 192
Unsupported API function prototyping 191

Mixed mode program
Coding 138
Common source code 140
Message Properties Dialog 136
Mixed mode sample program 133
Resources 139
Text properties 135
Win32 Tab control 135

MsgToTV() 200
Multiple Document Interface

Coding 110
Frame window 105
hwndClient 113
MainWndProc() 114, 118
MDI child windows 104
MDIWndproc() 113, 118
Resources 111
Source files 110
TranslateAccelator() 113
TranslateAccelerator() 113
TranslateMDISysAccel() 113
User interface 105
Win32 API 108
WinMain() 112

N
Named pipe sample program

Client application 181
Server application 179

NM_RCLICK 204, 210
Notification messages 201

274 Open32 for OS/2 Warp

O
Open32 3
Open32 Architecture 3
OPEN32CC.C 226
Open32GetLong() 199
OPEN32IL.C 211
Open32SendMsg() 199, 199
OPEN32TV.C 199
OpenFile() 242
OS/2 Warp Toolkit

Installing 31
OS2CC.C 226
OS2CCTRL.H 226
OS2TV.C 200
OS2WIN.H 82
OS2WINCC.H 226
OS2WINIL.H 211
Overwrite Original (in SMART) 84

P
Platform specific code

BookDlProc() 142
ColorDlgProc() 142
Converting common source code 151
Converting platform specific code 151
Converting resources 149
getGMessage() 141
Migration 149
SetGMessage() 141
TexDlgProc() 142

PMWINX.LIB 90
PRIVATE.H 226

R
RECORDCORE 203, 207
RECORDINSERT 203, 208
Resource Compiler errors 258
Resources, Translating (in SMART) 83
run-time errors 259

S
Server application coding

Close 187

Server application coding (continued)
Open 186
Receive 187
Send 187

Smart 7, 83
Installing 47

Stacksize 89
strcpy() 98
Support String ID (in SMART) 84

T
The Developer Conection 10 15
The Developer Connection for OS/2

Installing 15
Toolkit, Installing 31
Tools 6
Translate Resources (in SMART) 83
Translation control 195—233
Translation Controls

Advantages of 198
Creating your own 225
Hints on Creating 229
Overview 201

Tree View Translation Control
Extending 224
How it works 196
Open32 Source Code 199
OS/2 Source Code 200
Unsupported Features 224
Using 213

TVM_INSERTITEM 201, 205
TVOpen32WndProc() 199
TVOS2WndProc() 200
TVTest Sample Program 213

Building 221
Converting Resources 219
Migration 214

U
Universal Resource Editor (URE) 7
UpdateImages() 200
UpdateTreeImages() 200

Index 275

V
VisualAge C++

Installing 57

W
WinCallWinMain() 89
Windows 95 195
WinMain() 88

276 Open32 for OS/2 Warp

IBML

Printed in U.S.A.

SG24-4719-00

