

First Edition (September 1987)

The following paragraph does not apply to the United Kingdom or any
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This publication could include technical inaccuracies or typographical
errors. Changes are periodically made to the information herein;
these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time.

It is possible that this publication may contain reference to, or infor
mation about, IBM products (machines and programs), programming,
or services that are not announced in your country. Such references
or information must not be construed to mean that IBM intends to
announce such IBM products, programming, or services in your
country.

Requests for copies of this publication and for technical information
about iBM products shouid be made to your iBM Authorized Deaier or
your IBM Marketing Representative.

Operating System/2 and OS/2 are trademarks of the International
Business Machines Corporation.

©Copyright International Business Machines Corporation 1986, 1987
All rights reserved. No part of this publication may be reproduced or
distributed in any form or by any means without prior permission in
writing from the International Business Machines Corporation.

Preface

This book contains technical information pertaining to the IBM Oper
ating System/2™ (OS/2™1).

This book covers topics for the system programmer, and application
developer. The reader should be knowledgeable about operating
systems and be proficient in one or more of the IBM Personal Com
puter programming languages. It is also assumed that you are
familiar with the 80286 architecture.

This book contains six chapters that describe the OS/2 Application
Programming Interface (API) Function Requests. The function
requests are arranged in alphabetical order and reflect each call's
purpose, calling sequence, parameter definitions, return codes, con
siderations and remarks.

Note: For a complete error code list refer to the Appendix at the back
of this book.

1 IBM Operating System/2™ and OS/2 are trademarks of
International Business Machines Corporation

iii

Related Publications

This book is intended to be used in conjunction with the:

IBM Operating System/2™ User's Reference
IBM Operating System/2™ Programmer's Guide

Other books related to OS/2 are:

IBM Personal Computer AT®2 Technical Reference
IBM Personal Computer XffM3 Model 286 Technical Reference
IBM Personal System/2™ Model 501/BM Personal System/2™
Model 60 Technical Reference
IBM Personal System/2™ Model 80 Technical Reference
IBM Personal Computer BIOS Technical Reference
IBM Personal Computer Macro Assembler/2
iAPX 286 Programmer's Reference Manual including the iAPX
286 Numeric Supplement 210498, or the iAPX 386 Programmer's
Reference Manual (ISSN 1-55512-022-9) Literature Department,
lntel®4 Corporation, 3065 Bowers Avenue, Santa Clara, CA. 95051

2 Personal Computer AT® is a registered trademark of
International Business Machines Corporation

a Personal Computer XT1'M Model 286 and IBM Personal System/2™ are
trademarks of International Business Machines Corporation

4 Intel® is a registered trademark of Intel Corporation.

iv

Contents

Chapter 1. IBM Operating System/2™ Function Requests 1-1
How OS/2 Function Requests Work . 1-1
OS/2 Function Request Format . 1-1

Chapter 2. OS/2 DOS Calls . 2-1
DosAllocHuge - Allocate Huge Memory 2-2
DosAllocSeg - Allocate Segment . 2-5
DosAllocShrSeg - Allocate Shared Segment 2-7
DosBeep - Generate Sound From Speaker 2-9
DosBufReset - Commit File's Cache Buffers 2-10
DosCaseMap - Perform Case Mapping 2-11
DosChDi r - Change Current Di rectory 2-13
DosChgFilePtr - Change (Move) File Read/Write Pointer . . . 2-14
DosCLIAccess - Request CLl/STI Privilege 2-16
DosClose - Close File Handle 2-17
DosCloseQueue - Close Queue 2-18
DosCloseSem - Close System Semaphore 2-19
DosCreateCSAlias - Create CS Alias 2-20
DosCreateQueue - Create Queue 2-22
DosCreateSem - Create System Semaphore 2-24
DosCreateThread - Create Another Thread of Execution . . . 2-26
DosCwait - Wait for Child Termination 2-28
DosDelete - Delete File . 2-31
DosDevConfig - Get Device Configuration 2-32
DosDevlOCtl - 110 Control for Devices 2-34
DosDupHandle - Duplicate File Handle 2-37
DosEnterCritSec - Enter Critical Section of Execution 2-39
DosErrClass - Classify Error Codes 2-41
DosError - Enable Hard Error Processing 2-44
DosExecPgm - Execute Program 2-46
DosExit - Exit Program . 2-51
DosExitCritSec - Exit Critical Section of Execution 2-53
DosExitlist - Routine List for Process Termination 2-54
DosFilelocks - File Lock Manager 2-56
DosFindClose - Close Find Handle 2-58
DosFindFirst - Find First Matching File 2-59
DosFindNext - Find Next Matching File 2-63
DosFlagProcess - Set Process External Event Flag 2-65
DosFreeModule - Free Dynamic Link Module 2-67

v

DosFreeSeg - Free Segment . 2-68
DosGetCollate - Get Collate Table 2-70
DosGetCp - Get Process Code Page 2-72
DosGetCtrylnfo - Get Country Information 2-74
DosGetDateTinie - Get Current Date and Time 2-77
DosGetDBCSEv - Get DBCS Environmental Vector 2-79
DosGetEnv - Get Address of Process Environment String . . 2-81
DosGetHugeShift - Get Shift Count 2-82
DosGetlnfoSeg - Get Address of System Variables Segment 2-83

Format of the Global Information Segment 2-84
Format of the Local Information Segment 2-86

DosGetMachineMode - Return Current Mode of Processor . 2-87
DosGetMessage - System Message with Variable Text 2-88
DosGetModHandle - Get Dynamic Link Module Handle 2-92
DosGetModName - Get Dynamic Link Module Name 2-93
DosGetPID - Return Process ID . 2-94
DosGetProcAddr - Get Dynamic Link Procedure Address 2-95
DosGetPrty - Get Process's Priority 2-97
DosGetSeg - Access Segment 2-99
DosGetShrSeg - Access Shared Segment 2-100
DosGetVersion - Get OS/2 Version Number 2-101
DosGiveSeg - Give Access to Segment 2-102
DosHoldSignal - Disable/Enable Signals 2-104
DoslnsMessage - Insert Variable Text Strings In Message 2-106
DosKillProcess - Terminate Process 2-108
DosLoadModule - Load Dynamic Link Module 2-110
DosLockSeg - Lock Segment in Memory 2-112
DosMakePipe - Create Pipe . 2-114
DosMemAvail - Get Size of Largest Free Memory Block . . 2-116
DosMkDir - Make Subdirectory 2-117

' DosMonClose - Close Connection to Device Monitor 2-118
DosMonOpen - Open Connection to Device Monitor 2-119
DosMonRead - Read Input from Monitor Structure 2-121
DosMonReg - Register Set of Buffers as Monitor 2-124
DosMonWrite - Write Output to Monitor Structure 2-127
DosMove - Move a File . 2-130
DosMuxSemWait - Wait for One of N Semaphores to Clear 2-132
DosNewSize - Change Fi le Size 2-134
DosOpen - Open File . 2-135
DosOpenQueue - Open Queue 2-143
DosOpenSem - Open Existing System Semaphore 2-144
DosPeekQueue - Peek Queue . 2-146
DosPFSActivate - Activate Font 2-149

vi

DosPFSCloseUser - Close Font User Interface 2-152
DosPFSlnit - Initialize Code Page and Font 2-154
DosPFSQueryAct - Query Active Font 2-157
DosPFSVerifyFont - Verify Font 2-159
DosPhysicalDisk - Partitionable Disk Support 2-161
DosPortAccess - Request Port Access 2-164
DosPtrace - Interface for Program Debugging 2-166
DosPurgeQueue - Purge Queue 2-174
DosPutMessage - Output Message Text to Indicated Handle 2-175
DosQCurDir - Query Current Directory 2-176
DosQCurDisk - Query Current Disk 2-177
DosQFHandState - Query File Handle State 2-178
DosQFilelnfo - Query File Information 2-181
DosQFileMode - Query File Mode 2-183
DosQFslnfo - Query File System Information 2-185
DosQHandType - Query Handle Type 2-187
DosQueryQueue - Query Size of Queue 2-189
DosQVerify - Query Verify Setting 2-190
DosRead - Read from File . 2-191
DosReadAsync - Asynchronous Read from File 2-193
DosReadQueue - Read from Queue 2-195
DosReallocHuge - Change Huge Memory Size 2-198
DosReallocSeg - Change Segment Size 2-200
DosResumeThread - Restart Thread 2-202
DosRmDir - Remove Subdirectory 2-203
DosScanEnv - Scan an Environment Segment 2-204
DosSearchPath - Search Path for File Name 2-205
DosSelectDisk - Select Default Drive 2-208
DosSelectSession - Select Foreground Session 2-209
DosSemClear - Clear (Release) Semaphore 2-211
DosSemRequest - Request Semaphore 2-213
DosSemSet - Set Semaphore Owned 2-216
DosSemSetWait - Set Semaphore and Wait for Next Clear . 2-217
DosSemWait - Wait for Semaphore To Clear 2-219
DosSendSignal - Send CTL . 2-221
DosSetCp - Set Code Page . 2-222
DosSetDateTime - Set Current Date and Time 2-224
DosSetFHandState - Set File Handle State 2-225
DosSetFilelnfo - Set File Information 2-228
DosSetFileMode - Set File Mode 2-230
DosSetFslnfo - Set File System Information 2-232
DosSetMaxFH - Set Maximum File Handles 2-234
DosSetProcCp - Set Process Code Page 2-235

vii

DosSetPrty - Set Process Priority 2-237
DosSetSession - Set Session Status 2-240
DosSetSigHandler - Set Signal Handler 2-243
DosSetVec - Establish Handler for Exception Vector 2-248
DosSetVerify - Set/Reset Verify Switch 2-250
DosSleep - Delay Process Execution 2-251
DosStartSession - Start Session 2-253
DosStopSession - Stop Session 2-259
DosSubAlloc - Suballocate Memory within Segment 2-261
DosSubFree - Free Memory Suballocated Within Segment 2-263
DosSubSet - Initialize or Set Allocated Memory 2-264
DosSuspendThread - Suspend Thread Execution 2-266
DosTimerAsync - Start Asynchronous Time Delay 2-267
DosTimerStart - Start Periodic Interval Timer 2-269
DosTimerStop - Stop Interval Timer 2-271
DosUnlockSeg - Unlock Segment 2-272
DosWrite - Synchronous Write to File 2-273
DosWriteAsync - Asynchronous Write to File 2-275
DosWriteQueue - Write to Queue 2-278

Chapter 3. OS/2 Keyboard Function Calls 3-1
KbdCharln - Read Character, Scan Code 3-2
KbdClose - Close a Logical Keyboard 3-6
KbdDeRegister - Deregister Keyboard Subsystem 3-7
KbdFlushBuffer - Flush key stroke Buffer 3-8
KbdFreeFocus - Free Keyboard Focus 3-9
KbdGetCp - Get Loaded Code Page IDs 3-10
KbdGetFocus - Get Keyboard Focus 3-11
KbdGetStatus - Get Keyboard Status 3-12
KbdOpen - Open a Logical Keyboard 3-15
KbdPeek - Peek at Character, Scan Code 3-16
KbdRegister - Register Keyboard Subsystem 3-20
KbdSetCp - Set the Code Page . 3-23
KbdSetCustXt - Set Custom code page 3-25
KbdSetFgnd - Set Foreground Keyboard Priority 3-26
KbdSetStatus - Set Keyboard Status 3-27
KbdStringln - Read Character String 3-30
KbdSynch - Synchronize Keyboard Access 3-33
KbdXlate - Translate Scan Code 3-34

Chapter 4. OS/2 Mouse Function Calls 4-1
MouClose - Close Mouse Device . 4-2
MouDeRegister - Deregister a Subsystem 4-3

viii

MouDrawPtr - Mouse Draw Pointer 4-4
MouFlushQue - Flush Mouse Queue 4-5
MouGetDevStatus - Get Mouse Device Status 4-6
MouGetEventMask - Get Mouse Event Mask 4-8
MouGetNumButtons - Get Number of Mouse Buttons 4-10
MouGetNumMickeys - Get Number of Mouse Mickeys 4-11
MouGetNumQueEI - Get Event Queue Status 4-12
MouGetPtrPos - Query Mouse Pointer Position 4-13
MouGetPtrShape - Get Pointer Shape 4-14
MouGetScaleFact - Get Mouse Scaling Factors 4-17
MoulnitReal - Initialize DOS mode 4-19
MouOpen - Open Mouse Device 4-21
MouReadEventQue - Read Mouse Event Queue 4-23
MouRegister - Register a Subsystem 4-26
MouRemovePtr - Remove Mouse Pointer 4-30
MouSetDevStatus - Set Mouse Device Status 4-32
MouSetEventMask - Set Mouse Event Mask 4-34
MouSetPtrPos - Set Mouse Pointer Position 4-36
MouSetPtrShape - Set Mouse Pointer Shape 4-38
MouSetScaleFact - Set Mouse Scaling Factor 4-42
MouSynch - Get Synchronous Access 4-44

Chapter 5. OS/2 Video Function Calls 5-1
VioDeRegister - DeRegister Video Subsystem 5-2
VioEndPopUp - Deallocate Pop-Up Display Screen 5-3
VioGetAnsi - Get ANSI Status . 5-4
VioGetBuf - Get Logical Video Buffer 5-5
VioGetConfig - Get Video Configuration 5-7
VioGetCp - Get Code Page . 5-9
VioGetCurPos - Get Cursor Position 5-10
VioGetCurType - Get Cursor Type 5-11
VioGetFont - Get Font . 5-13
VioGetMode - Get Display Mode 5-16
VioGetPhysBuf - Get Physical Display Buffer 5-18
VioGetState - Get Video State . 5-20
VioModeUndo - Restore Mode Undo 5-23
VioModeWait - Restore Mode Wait 5-25
VioPopUp - Allocate a pop-up Display Screen 5-28
VioPrtSc - Print Screen . 5-32
VioPrtScToggle - Toggle Print Screen 5-33
VioReadCellStr - Read Char/ Attr String 5-34
VioReadCharStr - Read Character String 5-36
VioRegister - Register Video Subsystem 5-38

ix

VioSavRedrawUndo - Screen Save Redraw Undo
VioSavRedrawWait - Screen Save Redraw Wait
VioScrLock - Lock Screen
VioScrollDn - Scroll Screen Down
VioScrolllf - Scroll Screen Left
VioScrollRt - Scroll Screen Right
VioScrollUp - Scroll Screen Up
VioScrUnLock - Unlock Screen
VioSetAnsi - Set ANSI On or Off
VioSetCp - Set Code Page
VioSetCurPos - Set Cursor Position
VioSetCurType - Set Cursor Type
VioSetFont - Set Font
VioSetMode - Set Display Mode
VioSetState - Set Video State

5-43
5-45
5-48
5-50
5-52
5-54
5-56
5-58
5-59
5-60
5-62
5-63
5-65
5-67
5-73

VioShowBuf - Display Logical Buffer 5-76
VioWrtCellStr - Write Char/Attr String 5-77
VioWrtCharStr - Write Character String 5-79
VioWrtCharStrAtt - Write Char String with Attr 5-81
VioWrtNAttr - Write N Attributes 5-83
VioWrtNCell - Write N Char/Attrs 5-85
VioWrtNChar - Write N Characters 5-87
VioWrtTTY - Write TTY String 5-89

Chapter 6. Generic IOCtl Commands 6-1
Category Code . 6-1
Function Code . 6-1
Generic IOCtl Example . 6-2

ASYNC (RS232-C) Generic IOCtl . 6-6
Category 1 Function 41 H . 6-8
Category 1 Function 42H . 6-10
Category Function 44H . 6-13
Category Function 45H . 6-15
Category 1 Function 46H 6-16
Category 1 Function 47H . 6-19
Category 1 Function 48H . 6-21
Category 1 Function 4BH . 6-22
Category 1 Function 53H . 6-24

Automatic Transmit Flow Control (XON/XOFF) 6-35
Automatic Receive Flow Control (XON/XOFF) 6-36
XON and XOFF CHARACTERS . 6-38

Category 1 Function 61 H . 6-47
Category 1 - Function 62H . 6-48

x

Category 1 Function 64H . 6-50
Category 1 Function 65H . 6-52
Category 1 Function 66H . 6-54
Category 1 Function 67H . 6-55
Category 1 Function 68H . 6-56
Category 1 Function 69H . 6-58
Category 1 Function 6DH . 6-60
Category 1 Function 72H . 6-62
Category 1 Function 73H . 6-64
Category 3 Pointer Draw Control IOCtl Commands 6-69
Category 3 - Function 72H . 6-70
Category 4 Keyboard Control IOCtl Commands 6-71
Category 4 - Function 50H . 6-72

Notes about the Code Page . 6-75
Category 4 Function 51 H . 6-88
Category 4 Function 52H . 6-89
Category 4 Function 53H . 6-90
Category 4 Function 54H . 6-92
Category 4 Function 55H · . 6-93
Category 4 Function 56H . 6-94
Category 4 Function 57H . 6-97
Category 4 Function 58H . 6-98
Category 4 Function 5CH . 6-99
Category 4 Function 5DH . 6-101
Category 4 Function 5EH . 6-102
Category 4 Function 71H . 6-103
Category 4 Function 72H . 6-104
Category 4 Function 73H . 6-105
Category 4 Function 74H . 6-106
Category 4 Function 75H . 6-108
Category 4 Function 76H . 6-109
Category 4 Function 77H . 6-111
Category 4 Function 78H . 6-112
Category 4 Function 79H . 6-113
Category 5 Printer Control IOCtl Commands 6-115
Category 5 Function 42H . 6-116
Category 5 Function 44H - 6-117
Category 5 Function 46H . 6-118
Category 5 Function 48H . 6-119
Category 5 Function 62H . 6-121
Category 5 Function 64H . 6-122
Category 5 Function 66H . 6-123
Category 5 Function 69H . 6-125

xi

Category 5 - Function 6AH . 6-127
Category 7 Mouse Control IOCtl Commands 6-129
Category 7 - Function 50H . 6-130
Category 7 Function 51H . 6-131
Category 7 Function 52H . 6-134
Category 7 Function 53H . 6-135
Category 7 Function 54H . 6-137
Category 7 Function 56H . 6-138
Category 7 Function 57H . 6-140
Category 7 Function 58H . 6-141
Category 7 Function 59H . 6-142
Category 7 Function 5AH . 6-143
Category 7 Function 5BH . 6-145
Category 7 Function SCH . 6-147
Category 7 Function 60H . 6-149
Category 7 Function 61H . 6-150
Category 7 - Function 62H . 6-151
Category 7 Function 63H . 6-153
Category 7 Function 64H . 6-155
Category 7 Function 65H . 6-156
Category 7 Function 66H . 6-157
Category 7 Function 67H . 6-159
Category 7 - Function 68H . 6-160
category 8 Logical Disk Control IOCtl Commands 6-162
Category 8 Function OOH . 6-163
Category 8 Function 01H . 6-164
Category 8 Function 02H . 6-165
Category 8 Function 03H . 6-166
Category 8 Function 20H . 6-167
Category 8 Function 21H . 6-168
Category 8 Function 43H . 6-169
Category 8 Functions 44H, 64H, 65H 6-172
Category 8 Function 45H . 6-175
Category 8 Function 63H . 6-177
Category 9 Physical Disk Control IOCtl Commands 6-179
Category 9 Function OOH . 6-180
Category 9 Function 01 H . 6-181
Category 9 Functions 44H, 64H, 65H 6-182
Category 9 Function 63H . 6-185
Category 10 Character Device Monitor IOCtl Commands 6-187
Category 1 O - Function 40H . 6-188
Category 11 General Device Control IOCtl Commands 6-190
Category 11 - Function 01H . 6-191

xii

Category 11
Category 11

Function 02H
Function 60H

Appendix A. IBM OS/2 Return Codes

Index

6-192
6-193

A-1

X-1

xiii

xiv

Chapter 1. IBM Operating System/2™
Function Requests

Applications built under IBM Operating System/2(0S/2) use a
dynamic link mechanism (far CALL) to access all services. The call
interface implementation is outlined below:

The OS/2 function requests must operate

1. for all memory models
2. for a wide range of IBM supported languages
3. for all dynamic link entries.

The stack passes call parameters when OS/2 service is requested,
using a call-return interface. Before a call is issued, parameters are
pushed onto the stack. The parameters are copied by the hardware,
from the requestor's stack to the receiving program's stack. All OS/2
functions are invoked using the call-return interface. The following
section explains how to use the call interface system.

How OS/2 Function Requests Work

A function call is declared EXTERNAL FAR when it is coded to a
dynamically linked subroutine. The compiler generates a standard
external reference. Library names that contain the dynamic link defi
nition records are sent to the linker when the object module links.
These records provide a correspondence between the called entry
point and the module file that contains the routine being called.

OS/2 Function Request Format

The Function Request interfaces are set up in this book descriptively
rather than in coding sequence example. The conventions described
below are employed throughout this document.

Since all parameters are pushed onto the stack, there are several
pseudo-instructions that describe these operations.

1-1

Operand

PUSH

PUSH@

CALL

WORD

DWORD

ASCllZ

OTHER

Description

pushes various size items onto the stack. The data
types are described below.

pushes the address of an item onto the stack. All
addresses in these interfaces are composed of a 32-bit
value, a 16-bit selector, and a 16-bit offset. These
addresses point to data item types.

calls a function and accesses it via FAR CALLS. A
parameter list contains several data items.

(2 bytes) is passed by value (pushed onto the stack) or
by reference (the address is passed on the stack).

(4 bytes) is passed by value or by reference.

is a null (OOH) terminated character string, accessed
by reference.

pushes the address of a structure on to the stack and is
accessed by reference.

Note: The OS/2 function calls in this book are described in mixed
case for readability. The function call names are known to the
system as upper case character strings. For example, the OS/2 func
tion call "DosGetlnfoSeg" is actually the external name
"DOSGETINFOSEG"

If you are using a compiler which will generate mixed case external
names, you may wish to code the OS/2 function calls in upper case.

1-2

Chapter 2. OS/2 DOS Calls

This chapter reflects the DOS Application Program Interface (API)
only. For a complete list of all return codes, refer to the Appendix in
the back of this book.

For information regarding other functional characteristics of the API,
refer to the OS/2 Technical Reference, Volume 1.

2-1

·:;, .. <:·=.·,,::.;,, ·,··· ,;.;·'~ ,,;-.' ;,; '·"~>~>' ,, h/ ;'._·=,'.~:;:;.:· ~·-

-~~it,~f.f9o(·' • ·· ··
-~•:·~~ti-1~ aij9~,_-M,:.morY:,-:-.;

Purpose
DosAllocHuge allocates multiple segments of memory.

Calling Sequence
EXTRN DosAllocHuge:FAR

PUSH
PUSH
PUSH@
PUSH
PUSH
CALL

WORD NumSeg
WORD Size
WORD Selector
WORD MaxNumSeg
WORD Flags
DosAllocHuge

;Number of 65536-byte segments
;Number of bytes in last segment
;Selector allocated (returned)
;Max number of 65536-byte segments
;Allocation flags

Where

NumSeg
is the number of 65536-byte segments requested.

Size
is the number of bytes requested in the last non-65536-byte
segment. A value of zero indicates none.

Selector
is where the selector of the first segment allocated is returned.

MaxNumSeg
is the maximum number of 65536-byte segments an object occu
pies as a result of any subsequent DosReallocHuge, (see
"DosReallocHuge - Change Huge Memory Size" on
page 2-198). If MaxNumSeg is 0, OS/2 assumes this segment will
never be increased by DosReallocHuge beyond its original size,
though it may be decreased.

Flags

2-2

indicate sharing attributes of the allocated segment. The fol
lowing bit values are defined below:

Bit 0 (0001 b) =
segment is shareable through DosGiveSeg

Bit 1 (0010b) =
segment is shareable through DosGetSeg

DosAllocHuge -
Allocate Huge Memory

Bit 2 (0100b) =

segment is discardable in low memory situations.

Returns

IF AX= O then NO error

ELSE AX = error code

Family API Considerations
Some options operate differently in the DOS mode than they do in the
OS/2 mode. Therefore, the following considerations apply to
DosAllocHuge when coding in the DOS mode:

• Requested Size value is rounded up to the next paragraph.
• Selector is the actual segment address allocated.
• Flags must be set equal to zero.
• MaxNumSeg is ignored.

Remarks
The memory allocated by DosAllocHuge is movable and swappable.
Increment the selector of the first segment to obtain a selector for a
second segment. Use the increment added to the second selector to
address the third segment, and so forth. Derive the increment by
shifting the value "1" to the left by the amount returned as a shift
count by DosGetHugeShift. For example:

• Assume DosAllocHuge is issued with NumSeg equal to three.
The first segment allocated is at selector number 63.

• If DosGetHugeShift returns a shift count of four, shifting the value
one by this amount results in an increment of 16

• Adding this increment to selector number 63 results in selector 79
as the second selector. Adding the increment to 79 yields
selector 95 as the third selector.

• The three selector values (63, 79, and 95) are saved by the
program and referenced for later use.

For any segments allocated as discardable, the data in the segments
is lost when they are discarded in low memory situations. To refer-

2-3

DosAllocHuge -
Allocate Huge Memory

ence the segments again the operator must reallocate them and
recreate the data.

For huge segments, discarding is forced on all other segments in the
huge allocation when one segment is discarded.

Memory allocated by DosAllocHuge is deallocated by DosFreeSeg.
The selector returned by DosAllocHuge is passed to DosFreeSeg,
which frees all the allocated memory.

2-4

DosAllocSeg -
Allocate Segment

Purpose
DosAllocSeg allocates a segment of memory to a requesting process.

Calling Sequence
EXTRN DosAllocSeg:FAR

PUSH WORD Size
PUSH@ WORD Selector
PUSH WORD Flags
CALL DosAllocSeg

Where

Size

;Number of bytes requested
;Selector allocated (returned)
;Allocation flags

is the number of bytes requested. The value specified must be
less than or equal to 65535. A value of zero indicates 65536 bytes.

Selector
is where the selector of the allocated segment is returned.

Flags
indicate sharing attributes of the allocated segment. The fol
lowing bit values are defined below:

Bit 0 (0001 b) =
segment is shareable through DosGiveSeg

Bit 1 (0010b) =
segment is shareable through DosGetSeg

Bit 2 (0100b) =
segment is discardable in low memory situations.

Returns

IF AX= 0 then NO error

ELSE AX = error code

2-5

DosAllocSeg -
Allocate Segment

Family API Considerations
Some options operate differently in the DOS mode than they do in the
OS/2 mode. Therefore, the following restrictions apply to
DosAllocSeg when coding in the DOS mode:

• Requested Size value is rounded up to the next paragraph.
• Selector is the actual segment address allocated.
• If Flag =one, an error is returned.

Remarks

The memory allocated by DosAllocSeg is movable and swappable.
To allocate a segment of memory that can be discarded when not in
use, use DoslockSeg and DosUnlockSeg in conjunction with
AllocFlags bit two set. In low memory situations, a segment can be
swapped if it is locked and if bit 2 is set. If the segment is unlocked, it
may be discarded.

For any segments allocated as discardable, the data in the segments
is lost when they are discarded in low memory situations. To refer
ence the segments again the operator must reallocate them and
recreate the data.

For huge segments, discarding is forced on all other segments in the
huge allocation when one segment is discarded.

2-6

DosAllocShrSeg -
Allocate Shared Segment

Purpose
DosAllocShrSeg allocates a shared memory segment to a process.

Calling Sequence
EXTRN DosAllocShrSeg:FAR

PUSH WORD Size
PUSH@ ASCIIZ Name
PUSH@ WORD Selector
CALL DosAllocShrSeg

Where

Size

;Number of bytes requested
;Name string
;Selector allocated (returned)

is the number of bytes requested. The value specified must be
less than or equal to 65535. A value of 0 indicates 65536 bytes.

Name
is a symbolic name to be associated with the shared memory
segment to be allocated. The name string that specifies the name
for the shared memory segment must include the prefix
\SHAREMEM\. For example \SHAREMEM\PUBLIC.DAT.

Selector
is where the selector of the allocated segment is returned.

Returns

IF AX = 0 then NO error

ELSE AX = error code

Remarks

Memory allocated by DosAllocShrSeg can be moved and swapped.
The selector returned to the issuing process by DosAllocShrSeg is
the same as that returned to another process when it issues
DosGetShrSeg to access the same segment.

2-7

DosAllocShrSeg -
Allocate Shared Segment

The name assigned to the segment should be used by another
process on its DosGetShrSeg call to access the same segment.

The maximum number of segments a process can define with
DosAllocShrSeg or access with DosGetShrSeg is 30.

2-8

DosBeep -
Generate Sound From Speaker

Purpose
DosBeep generates sound from the speaker.

Calling Sequence
EXTRN DosBeep:FAR

PUSH WORD Frequency
PUSH WORD Duration
CALL DosBeep

Where

Frequency

;Hertz (Hz)
;Length of sound

'is the tone in Hertz (cycles per second) in the range 37 to 32767.

Duration
is the length of the sound in milliseconds.

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks

DosBeep executes synchronously. An application program that
invokes DosBeep waits until the specified number of milliseconds
expire before it resumes execution.

2-9

., /. ,•;,;• ~• ~; }} ~ ·~.~;•A '.,. ,•,'• • ,,,.,

'.~~~~l.ll~e~~ .. ;··:·:.· ·::;:.r: ·.·.·· ··.· ..
Q<),~1;1111; ~~,,~i~~:··:~•~fl•··Bu~ .. rs

Purpose
DosBufReset flushes a requesting process's cache buffers for a spe
cific file handle.

Calling Sequence
EXTRN DosBufReset:FAR

PUSH
CALL

WORD FileHandle
DosBufReset

Where

FileHandle

; File handle

is the file handle whose buffers are to be flushed. If FileHandle =

FFFFH, all of the process's cache buffers that require file 1/0 are
written out.

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks
Upon issuing DosBufReset, a file's directory entry is updated as if the
file had been closed, however, the file remains in the open state.

To flush a requesting process's cache buffers using DosBufReset
could require the user to mount and dismount a large number of
removable volumes.

2-10

DosCaseMap -
Perform Case Mapping

Purpose
DosCaseMap performs case mapping on a string of binary values that
represent ASCII characters.

Calling Sequence
EXTRN DosCaseMap:FAR

PUSH WORD Length ;Length of string to case map
PUSH@ OTHER Structure ;Input data structure
PUSH@ OTHER BinaryString ;Address of string of binary
CALL DosCaseMap

Where

Length
is the length of the string of binary values to be case mapped.

Structure
is a two word input data structure where:

word 0
Country Code (0 - default country)

word 1
Code Page ID (0 - current process code page).

BinaryString
is a string of binary characters to be case mapped. They are case
mapped in place so the results appear in BinaryString and the
input is destroyed.

Returns

IF AX = 0 then NO error

ELSE AX = error code

2-11

DosCaseMap -
Perform Case Mapping

Remarks

The case map information is taken from the country information file.
See the COUNTRY statement in the IBM Operating System/2™ User's
Reference for information on how to specify the country information
file.

If the Country Code in Structure is 0, the case mapping is performed
using the information for the country specified in the COUNTRY state
ment in CONFIG.SYS. If the Country Code in Structure is not zero, the
case mapping is performed using the information for that country.

If the CodePagelD in Structure is 0, the case mapping is performed
using the information for the current process code page. Refer to
"DosSetCp - Set Code Page" on page 2-222 and the CHCP
command in the IBM Operating System/2™ User's Reference for
information on setting the process code page. If the CodePagelD in
Structure is not 0, the case mapping is performed using the informa
tion for that code page.

The returned country dependent information may be for the default
country and current process code page or for a specific country and
code page.

2-12

Purpose

DosChDir -
Change Current Directory

DosChDir defines the current directory for the requesting process.

Calling Sequence
EXTRN DosChDir:FAR

PUSH@ ASCIIZ DirName
PUSH DWORD e
CALL DosChDir

Where

DirName

;Directory path name
;Reserved (must be zero)

is the directory path name. The string is limited to 64 characters.

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks
The directory path is not changed if any member of the path does not
exist. The current directory changes only for the requesting process.

2-13

DosChgFilePtr· ~
Change (Move) File Re1t1JWrite Pointer

Purpose
DosChgFilePtr moves the read/write pointer in accordance with the
method specified.

Calling Sequence
EXTRN DosChgFilePtr:FAR

PUSH
PUSH
PUSH
PUSH@
CALL

WORD FileHandle
DWORD Distance
WORD Move Type
DWORD NewPointer
DosChgFilePtr

Where

FileHandle

;File handle
;Distance to move in pytes
;Method of moving (0, l, 2)
;New Pointer Location

is the handle returned by a previous DosOpen call.

Distance
is the distance (offset) to move in bytes.

Move Type
is the method of moving:

If value= 0
move pointer Distance bytes (offset) from the beginning of the
file.

If value= 1
move pointer to the current location plus offset.

If value= 2
move pointer to the end-of-file plus offset. Use this method to
determine a file's size.

NewPointer
is the area where the system returns the new pointer location.

Returns

IF AX= 0 then NO error

ELSE AX = error code

2-14

Remarks
None

DosChgFilePtr -
Change (Move) File Read/Write Pointer

2-15

DosCLIAccess -
Request CLl/STI Privilege

Purpose
DosCLIAccess requests 110 privilege for disabling and enabling inter
rupts. Access to ports must be granted via DosPortAccess.

Calling Sequence
EXTRN DosCLIAccess:FAR

CALL DosCLIAccess

Where
None

Returns

AX=O

Remarks
Applications that only use CLl/STI in IOPL segments must request
CLl/STI privilege from the operating system.

Applications that use IN/OUT instructions to 110 ports must request
110 privilege with DosPortAccess. (See "DosPortAccess - Request
Port Access" on page 2-164 for more detail) Request for port access
will also grant CLl/STI privilege from the operating system.

2-16

Purpose
DosClose closes a specific file handle.

Calling Sequence
EXTRN DosClose:FAR

PUSH WORD FileHandle
CALL DosClose

Where

FlleHandle

;File handle

DosClose -
Close File Handle

is the handle returned by a previous DosOpen or DosMakePipe
call.

Returns

IF AX = 0 then NO error

ELSE AX = error code

Remarks
Closing a file handle closes the file, updates the directory, and writes
the file's internal buffers to the media.

When hard error popups are disabled, issue DosBufReset before
issuing DosClose.

2-17

-oo&c1&-•nt1eue
¢1C,s~ Queue'.

Purpose
DosCloseQueue closes the queue in use by the requesting process.

Calling Sequence
EXTRN DosCloseQueue:FAR

PUSH WORD QueueHandle ;Handle of queue
CALL DosCloseQueue

Where

QueueHandle
is the handle returned from a previous DosCreateQueue or
DosOpenQueue call.

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks
When DosCloseQueue is issued, if the requesting process is the
owner of the queue, all outstanding elements are purged. Other proc
esses that have the queue open receive the QUEUE_DOES
NOT_EXIST (invalid queue handle) return code on the next request.

For a writer of the queue using DosCloseQueue, access to the queue
is terminated, but the queue is not affected.

2-18

DosCloseSem -
Close System Semaphore

Purpose
DosCloseSem closes a specific system semaphore.

Calling Sequence
EXTRN DosCloseSem:FAR

PUSH DWORD SemHandle
CALL DosCloseSem

Where

SemHandle

;Semaphore handle

is the handle returned from a previous DosCreateSem or
DosOpenSem cal I.

Returns

IF AX = 0 then NO error

ELSE AX = error code

Remarks
When all processes using the semaphore issue DosCloseSem, the
semaphore is deleted. If a process terminates with open
semaphores, the system closes the semaphores. If any of the
semaphores are owned by the current process, the first thread given
the semaphore wakes with the ERROR_ SEM_OWNER_DIED. This
indicates the owner of the semaphore ended without releasing it and
the resources are in an indeterminate state.

2-19

···ooscra·a180.s~l1as::
dr8a18.~$:~1'.11t~ ·

Purpose
DosCreateCSAlias creates a code segment alias descriptor for a data
segment passed as input.

Calling Sequence
EXTRN DosCreateCSAlias:FAR

PUSH WORD DataSelector ;Data segment selector
PUSH@ WORD CodeSelector ;Code segment selector (returned)
CALL DosCreateCSAlias

Where

DataSelector
is the data segment selector.

CodeSelector
is where the selector of the code segment alias descriptor is
returned.

Returns

IF AX= 0 then NO error

ELSE AX = error code

Family API Considerations
The returned selector is the segment address of the allocated
memory. When the returned selector or the original selector is
freed, OS/2 immediately deallocates the block of memory.

Remarks
Any selector valid for OS, ES or SS, can be used as the data segment
selector passed as input to DosCreateCSAlias. However, its segment
must be exclusively accessible by the process and not a huge
segment. Shared memory segments and dynamically linked global
data segments cannot be used as input for DosCreateCSAlias.

2-20

DosCreateCSAlias -
Create CS Alias

The code segment selector returned as output is valid for CS. If a
valid procedure is stored in the segment that uses the data selector,
the procedure can be called using the CS alias. The procedure is
called from privilege level three or 1/0 privilege level.

Use DosFreeSeg to free a CS alias created with DosCreateCSAlias.
Procedures in the segment continue to be referenced if the data
selector for the aliased segment is passed to DosFreeSeg, however
the CS alias selector is not affected.

2-21

Doscr&ateQueue· · -
Create .. Queue

Purpose
DosCreateQueue creates a queue owned by a creating process.

Calling Sequence
EXTRN DosCreateQueue:FAR

PUSH@ WORD RWHandle
PUSH WORD QueuePrty
PUSH@ ASCIIZ QueueName
CALL DosCreate~ueue

Where

RWHandle

;Queue handle (returned)
;Ordering to use for elements
;Queue name string

is where the read/write handle of the queue is returned. The
handle is used by the requester on return.

QueuePrty
indicates the priority ordering algorithm to use for elements
placed in the queue. The valid values and their meanings are:

0 =FIFO queue
1 = LIFO queue
2 = Priority queue (sender specifies priority zero to 15.)

QueueName
is the name of the queue. The name string that specifies the
name for the queue must include \QUEUES\ as a path name. For
example, \QUEUES\RETRIEVE\CONTROL.QUE is a valid queue
name. The same name must be specified when calling
DosOpenQueue for the process which adds elements to the
queue.

Returns

IF AX = O then NO error

ELSE AX = error code

2-22

Remarks

DosCreateQueue -
Create Queue

A queue must be created before it can be opened. The process that
creates a queue owns the queue. When specifying a name for a
queue, the ASC//Z name string must include the prefix \QUEUES\.
Only the owner can access or remove the elements in a queue. Any
process can open a queue and place data in it. When a queue is
created, each process writing to it must open the queue through
DosOpenQueue. When a process creates or opens a queue, any
thread in that process can access the queue with equal authority.
This provides the capability for multi-server queues.

A queue exists when it is created and ceases to exist when the owner
closes it. If other processes have a queue open when the owner
closes it, subsequent requests return with the "queue does not exist"
return code.

2-23

,::·oif.c,reateseri,,····.
ori,atC. system $emaphore .

Purpose
DosCreateSem creates a system semaphore used by semaphore
manipulation calls such as DosSemRequest, DosSemClear,
DosSemSet, DosSemSetWait, DosSemWait, and DosMuxSemWait.

Calling Sequence
EXTRN DosCreateSem:FAR

PUSH WORD NoExclusive
PUSH@ DWORD SemHandle
PUSH@ ASCIIZ SemName
CALL DosCreateSem

Where

NoExclusive

;Indicate no exclusive ownership
;Semaphore handle (returned)
;Semaphore name string

is an indicator that the owning process does not want exclusive
ownership of the semaphore. Other processes can alter the state
of the semaphore while it is owned.

If value= O
the owning process has exclusive ownership of the
semaphore.

If value= 1
exclusive ownership is not required.

SemHandle
is where the handle assigned the semaphore is returned.

SemName
is the name of the system semaphore. The name string that speci
fies the name for the semaphore must include \SEM\ as a path
name. For example, \SEM\RETRIEVE\SIGNAL.SEM is a valid
semaphore name. The same name must be specified when calling
DosOpenSem for any other process that needs to access the same
semaphore.

2-24

Returns

IF AX= O then NO error

ELSE AX = error code

Remarks

DosCreateSem -
Create System Semaphore

DosCreateSem creates a system semaphore to control access to a
serially reusable resource through multiple asynchronous threads.
DosCreateSem opens and allows access to a semaphore. The
NoExclusive operand allows an owned semaphore to be modified by
a process other than the owner. When the system semaphore is
exclusive this means the semaphore has a use count associated with
it. When specifying the name for a system semaphore, the ASCllZ
name string must include the prefix \SEM\.

2-25

;;~~~"~,.,.,~~i/. . .. · ... · · ..
. : .. ~·r,.~te,:·.•nother Thread ·Of ··•Execu.tion

Purpose
DosCreateThread creates an asynchronous thread of execution under
the current process.

Calling Sequence
EXTRN DosCreateThread:FAR

PUSH DWORD
PUSH@ WORD
PUSH DWORD

PgmAddress ;Program address
ThreadIDWord ;New thread ID (returned)
NewThreadStack ;End of stack

; for new thread
CALL DosCreateThread

Where

PgmAddress
is the program to receive control under the new thread.

ThreadlDWord
is where the thread ID of the new thread is to be returned.

NewThreadStack
points to the end of the new thread's stack.

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks
DosCreateThread causes a far call to be generated by the system at
PgmAddress. The new thread is identical to the requesting thread
and can access all files and resources owned by the parent process.
Operations of all threads within a process are identical. The only
thread-specific information maintained is register contents, stack, and
dispatching priority.

2-26

DosCreateThread -
Create Another Thread of Execution

Within a given process, any thread can open a file or device and any
other thread can subsequently issue read or writes to that handle. A
similar case exists with pipes, queues and system semaphores.

2-27

, ,

l),oscwaH -.:.
' , '

Wait for Child Termination

Purpose
DosCwait places the current thread in a wait state until a child
process terminates. When this occurs, the process ID and termination
code of the ending process is returned.

Calling Sequence
EXTRN DosCwait:FAR

PUSH
PUSH
PUSH@
PUSH@
PUSH
CALL

WORD ActionCode
WORD WaitOption
DWORD ReturnCodes
WORD ProcessIDWord
WORD Process ID
DosCwait

Where

ActionCode

;Execution options
;Wait options
;Termination Codes (returned)
;Process ID (returned)
;Process ID of process to wait for

indicates the process of interest:

If value= 0
the current thread waits until the indicated process ends.

If value= 1
the current thread waits until the indicated process and all its
child processes end.

WaitOption
indicates return if no child process ends:

If value= 0
the current thread waits if no child process ends or until there
are no child processes outstanding.

If value= 1
the current thread does not wait for child processes to end.

ReturnCodes
is where the termination code and result code indicate the reason
for the child's termination is returned.

2-28

DosCwait -
Wait for Child Termination

The first word is a termination code. It is furnished by the system,
and describes why the child terminated. The values returned and
their meanings are:

0 = EXIT (normal exit)
1 = hard error abnormally end (or stop) execution
2 = trap operation
3 = unintercepted DosKillProcess.

The second word passes the ResultCode specified by the termi
nating process on its last DosExit call.

Process/DWord
is where the process ID of the ending process is returned.

Process/D
is the ID of the terminating process being waited for:

If value= 0
the current thread waits until any child process ends.

If value =F 0
the current thread waits until the indicated process and all its
child processes end.

Returns

IF AX = 0 then NO error

ELSE AX = error code

Remarks
DosCwait waits for completion of a child process. If a child process
starts other processes, DosCwait waits for the grandchild processes
to complete before it returns. It does not report their status. If the
indicated child process has multiple threads, the result code is
returned on the last DosExit request.

If no child processes were started, DosCwait returns with an error. If
no child processes terminate, DosCwait waits until one terminates
before returning to the parent.

Check the process ID to verify which child a return code is from. To
wait for all child processes and grandchild processes to end, issue

2-29

DosCwait -
Wait for Child Termination

DosCwait (with ActionCode = 1, ProcesslD = 0) repeatedly until the
NO_CHILD_PROCESS_EXISTS return code is given.

If DosCwait is used to wait for a child process to end, use
DosExecPgm to create the child process and indicate
"AsyncTraceFlags=2".

2-30

Purpose

DosDelete -
Delete File

DosDelete removes a directory entry associated with a filename.

Calling Sequence
EXTRN DosDelete:FAR

PUSH@ ASCIIZ FileName
PUSH DWORD e
CALL DosDelete

Where

FileName

;Filename path
;Reserved (must be zero)

is the name of the file to be deleted.

Returns

IF AX = 0 then NO error

ELSE AX = error code

Remarks
Global filename characters are not allowed in any part of the ASCllZ
string. DosDelete cannot delete read-only files. To delete a
read-only file, use DosSetFileMode to change the file's read-only
attribute to 0, then delete the file.

2-31

D~•D•YConfl.. -
Get· Device ,c.onfiguration

Purpose

DosDevConfig gets information about attached devices.

Calling Sequence
EXTRN DosDevConfig:FAR

PUSH@ OTHER Devicelnfo ;Returned infonnation
; Item number
;Reserved

PUSH WORD Item
PUSH WORD Pann
CALL DosDevConfig

Where

Devicelnfo
is where the requested information is returned.

Item
indicates what device information to return:

Item Returned Device Information
O Number of printers attached
1 Number of RS232 ports
2 Number of internal diskette drives
3 Presence of math coprocessor (where O = not present, 1

=present)
4 PC Submode! Type (where the return is the system sub

mode! byte)
5 PC Model Type (where the return is the system model

byte)
6 Display adapter type (where O = monochrome mode com

patible, 1 =other).

Parm
is reserved and should be set to 0.

2·32

Returns

IF AX = O then NO error

ELSE AX = error code

Remarks

DosDevConfig -
Get Device Configuration

The system model (function 5) and submode! (function 4) information
is obtained from BIOS.

In addition, the number of devices attached in a PS/2 environment
reflect only devices that are "awake". Devices that are "asleep" are
not counted.

2-33

'Ill~~~,~·~qt[:.': > · .. ~
.;1io ·qon.1~01 .• 1o:r·. De.vices

Purpose
DosDevlOCtl performs control functions on a device specified by an
opened device handle.

Calling Sequence
EXTRN DosDevIOCtl:FAR

PUSH@
PUSH@
PUSH
PUSH
PUSH
CALL

OTHER Data
OTHER ParmList
WORD Function
WORD Category
WORD DevHandle
DosDevIOCtl

Where

Data
is the data area.

Parm List

;Data area
;Command arguments
;Device function
;Device category
;Specifies the device

is a command-specific argument list.

Function
is the device-specific function code.

Category
is the device category.

DevHandle
is a device handle returned by DosOpen or a standard (open)
device handle.

Returns

IF AX= 0 then NO error

ELSE AX = error code

2-34

DosDevlOCtl -
110 Control for Devices

Family API Considerations
Level of support for DosDevlOCtl is identified by category and func
tion call, with a noted restriction if it is not supported by DOS 3.3.
Functions tend to be more restrictive in lower versions of DOS.

• Category 1 supported in Family API
• 41 h Set Baud Rate
• 42h Set Line Control
• Al I other Category one functions not supported for DOS 3.3
• Category 2 not supported in the Family API
• Category 3 not supported in the Family API
• Category 4 not supported in the Family API
• Category 5 supported in the Family API
• 42h Set Frame Control (for IBM Graphics Printers only)
• 44h Get Infinite Retry (DOS 3.3 the function is in effect for duration

of program only.)
• 46h Initialize Printer
• 62h Get Frame Control (not supported for DOS 3.3)
• 64h Get lnfjnite Retry
• 66h Get Printer Status
• Category 6 not supported by the Family API
• Category 7 not supported by the Family API
• Category 8 supported in Family API
• OOh Lock Drive (not supported below DOS 3.3)
• 01 h Unlock Drive (not supported below DOS 3.3)
• 02h Redetermine Media (not supported below DOS 3.3)
• 03h Set Logical Map (not supported below DOS 3.3)
• 20h Block Removable (not supported below DOS 3.3)
• 21 h Get Logical Map (not supported below DOS 3.3)
• 43h Set Device Parameters (not supported DOS 3.3)
• 44h Write Track (not supported DOS 3.3)
• 45h Format Track (not supported DOS 3.3)
• 63h Get Device Parameters (not supported DOS 3.3)
• 64h Read Track (not supported DOS 3.3)
• 65h Verify Track (not supported DOS 3.3)
• Category 9 reserved
• Category 10 (OAh) not supported in the Family API
• Category 11 (OBh) not supported in the Family API.

2-35

DosDevlOCtl -
110 Control for Devices

Remarks
Values returned in the range hex FFOO to FFFF are user dependent
error codes. Values returned in the range hex FEOO to FEFF are
device driver dependent error codes. Refer to the IBM Operating
System/2 Technical Reference, Volume 1 for complete listing of
DevHlp calls.

2-36

Purpose

DosDupHandle -
Duplicate File Handle

DosDupHandle returns a new file handle for an open file that refers to
the same file at the same position.

Calling Sequence
EXTRN DosDupHandle:FAR

PUSH WORD OldFileHandle ;Existing file handle
PUSH@ WORD NewFileHandle ;New file handle (returned)
CALL DosDupHandle

Where

OldFileHandle
is the current file handle.

NewFileHandle
is where the new file handle is returned. When DosDupHandle is
called, if this word contains FFFFH, OS/2 allocates a new file
handle and returns its value here. If this word contains any other
value, OS/2 assumes this value is to be the new file handle.

Returns

IF AX= 0 then NO error

ELSE AX= error code

Remarks
Duplicating the handle duplicates and ties all handle-specific informa
tion between OldFileHandle and NewFileHandle.

A file handle value other than FFFFH specified in NewFileHandle
causes OS/2 to close the file handle before redefining it as the dupli
cate of OldFileHandle.

2-37

DosDupHandle -
Duplicate File Handle

The values for NewFileHandle include:

FFFFH
OOOOH
0001H
0002H
nnnn

= assign new handle
= standard input
= standard output
= standard error
the handle of any currently open file.

Note: Avoid using other arbitrary values.

If the read/write pointer Qf either handle is moved by DosRead,
DosWrite, or DosChgFilePtr, the pointer for all duplicated handles is
also changed. ·

Issuing DosClose against a file handle does not affect the duplicate
handle.

2-38

DosEnterCritSec -
Enter Critical Section of Execution

Purpose
DosEnterCritSec disables thread switching for the current process.

Calling Sequence
EXTRN DosEnterCritSec:FAR

CALL DosEnterCritSec

Where
None

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks
When the current thread issues DosExitCritSec, other threads in a
process resume normal dispatching.

If a signal occurs, the first thread begins execution to process the
signal even though another thread in the process has a
DosEnterCritSec active. Any processing the first thread does to
satisfy the signal must not access the critical resource intended to be
protected by the DosEnterCritSec.

A count of the number of outstanding DosEnterCritSec requests is
maintained. The count is increase on DosEnterCritSec requests and
decreased on DosExitCritSec requests. A DosExitCritSec request
does not cause normal thread dispatching to restore while the count
is greater than zero. This count is maintained in a word and if over
flow is encountered, the count is set to the maximum value, an error
is returned, and the operation does not perform.

2-39

DosEnterCritSec -
Enter Critical Section of Execution

Once a DosEnterCritSec request has been made, no dynamic link
calls should be made until the corresponding DosExitCritSec call has
been completed.

2-40

DosErrClass -
Classify Error Codes

Purpose
DosErrClass helps OS/2 applications respond to error codes (return
codes) received from the OS/2 API.

Calling Sequence
EXTRN DosErrClass:FAR

PUSH
PUSH@
PUSH@
PUSH@
CALL

WORD Code
WORD Class
WORD Action
WORD Locus
DosErrClass

Where

Code

;Error code for analysis
;Error classification (returned)
;Reconmended action (returned)
;Error locus (returned)

is the error code returned by an OS/2 function.

Class
is where the classification of that error is returned.

Action
is where the recommended action for that error is returned.

Locus
is where the origin of the error is returned.

Returns
AX=O

Remarks
The input is the return code returned from another function call, and
the output is a classification of the return and recommended action.
Depending on the application, the recommended action could be fol
lowed, or a more specific application recovery could be performed.

When DosErrClass is called by a family application, it returns a valid
error classification for returns that have occurred. The classifications

2-41

DosErrClass -
Classify Error Codes

of a given return code may not be the same for the Family API and
the OS/2 mode applications.

The following values are returned in Class, Action, and Locus:

Class Definitions

Value Mnemonic Description
1 OUTRES Out of resources
2 TEMPS IT Temporary situation
3 AUTH Authorization failed
4 INTRN Internal error
5 HRDFAIL Device hardware failure
6 SYSFAIL System failure
7 APPEAR Probable application error
8 NOTFND Item not located
9 BADFMT Bad format for call/data
10 LOCKED Resource/data locked
11 MEDIA Incorrect media, CRC error
12 ALREADY Resource/action already taken/done/exists
13 UNK Unclassified
14 CAN'T Can't perform requested action
15 TIME Timeout

Action Definitions

Value Mnemonic Description
1 RETRY Retry immediately
2 DLYRET Delay and retry
3 USER Bad user input - get new values
4 ABORT Terminate in an orderly manner
5 PANIC Terminate immediately
6 IGNORE Ignore error
7 INTRET Retry after user intervention

2-42

Locus Definitions

Value
1
2
3
4
5

Mnemonic
UNK
DISK
NET
SER DEV
MEM

Description
Unknown

DosErrClass -
Classify Error Codes

Random access device such as a disk
Network
Serial device
Memory

2-43

Purpose
DosError allows a process to disable user notification (from OS/2) on
hard errors and program exceptions.

Calling Sequence
EXTRN DosError:FAR

PUSH WORD Flag
CALL DosError

Where

Flag

;Action flag

is a bit field defined as shown below. The unused high-order bits
are reserved and must be 0.

xxxxxxxxxxxxxxx0 disable hard error popups
(fail requests)

xxxxxxxxxxxxxxxl enable hard error popups
xxxxxxxxxxxxxx0x enable exception popups
xxxxxxxxxxxxxxlx disable exception popups

Returns

IF AX = 0 then NO error

ELSE AX = error code

Family API Considerations
Some options operate differently in the DOS mode than they do in the
OS/2 mode. Therefore, the following restriction applies to DosError
when coding in the DOS mode:

For Flags, a value of 0000 will cause all subsequent INT 24's to be
failed until a subsequent call with a value of 1 is issued.

2-44

Remarks

DosError -
Enable Hard Error Processing

The default situation is both hard error pop-ups and exception
pop-ups are enabled, if DosError is not issued. DosError allows an
OS/2 process to disable user notification if a program (or untrapped
numeric processor) exception occurs. If end user notification is disa
bled, and, if one of these exceptions occurs, the process is termi
nated.

2-45

, . ·: ... -~' .. ' ·: . ~.:, , : ': . ., . ;_ '.

DoseiecPgrrf· -
execute ··Program .

Purpose
DosExecPgm allows a program to request another program to
execute as a child process. The requestor's process continues to
execute asynchronously to the new program.

Calling Sequence
EXTRN DosExecPgm:FAR

PUSH@
PUSH
PUSH
PUSH@
PUSH@
PUSH@
PUSH@
CALL

OTHER ObjNameBuf
WORD ObjNameaufL
WORD ExecFlags
ASCIIZ ArgPointer
ASCIIZ EnvPointer
DWORD ReturnCodes
ASCIIZ PgmPointer
DosExecPgm

Where

ObjNameBuf

;Object name buffer (returned)
;Length of object name buffer
;Execute asynchronously/trace
;Argument string
;Environment string
;Termination codes (returned)
;Program filename

is a buffer where the name of the object that contributed to the
failure of DosExecPgm is returned.

ObjNameButL
is the length, in bytes, of the buffer described by ObjNameBuf.

ExecFlags
is an indicator that the requested program is to execute asynchro
nous to the requestor, with/without tracing, or in a session sepa
rate from the parent.

Value Definition

If value= O

2-4$

the program executes synchronously to the parent process.
The termination code and result code is stored in the
two-word structure ReturnCodes.

DosExecPgm -
Execute Program

If value= 1
the program executes asynchronously to the parent process.
When the requested program terminates, its ResultCode is
discarded. The Process ID is stored in the first word of the
two-word structure ReturnCodes.

If value= 2
the program executes asynchronously to the parent process.
When the requested program terminates, its ResultCode is
saved for interrogation by a DosCwait request. The Process
ID is stored in the first word of the two-word structure
ReturnCodes.

If value= 3
the program executes under conditions for tracing. The
parent process is the debugger and the chi Id is the process
to be debugged.

If value= 4
the program executes asynchronously to the parent process
detached from the parent process session. When a process
is started as a detached process it is not affected if the
parent process is stopped. The detached process is treated
as an orphan of the parent process. A program executed
with this option executes in the background. It should not
require any input from the keyboard or output to the screen
other than VioPopUps. It should not issue any VIO, KBD or
MOU calls.

If value= 5
the program is loaded into storage and made ready to
execute, but is not placed into execution until the session
manager thaws the process.

Some memory is consumed for uncollected result codes. Issue
DosCwait to release this memory. If result codes are not col
lected, then ExecFlags = 0 or 1 should be used.

ArgPointer
is a set of argument strings passed to the target program. These
strings represent "command parameters" for the program as
opposed to the "environment parameters."

2-47

DosExecPgm -
Execute Program

The convention used by CMD.EXE is that the first of these strings
is the program name (as entered after the command prompt or
found in a batch file) and the second string is the remaining char
acters from the command prompt.

If no argument string is passed to the program, push a
double-word of Os.

EnvPolnter
is a block of text strings that are passed to the program. These
strings convey configuration parameters and represent the combi
nation of the current value of all "Set Symbols" for the current
program.

When an indicated program gets control, it receives:

• A pointer to a copy of the environment
• A string of the fully qualified path of the filename of the

program being started
• A copy of the argument strings passed to the target program.

A coded example of this follows:

ea: ASCIIZ string 1 environment string 1
ASCIIZ string 2 environment string 2

ASCIIZ string n environment string n
Byte of 0

po: ASCIIZ string of filename
of program to run.

ao: ASCIIZ argument string 1
ASCIIZ argument string 2
Byte of 0

The beginning of the environment segment is "eo" and "ao" is the
offset of the first argument string in that segment. Register BX
contains "ao" on entry to the target program. The environment
strings have the form parameter = value. AO value for the
address of EnvPointer causes the newly created process to inherit
the unchanged parent's environment.

2-48

ReturnCodes

DosExecPgm -
Execute Program

is a structure where the Process ID or termination code and the
result code, indicating the reason for the child's termination are
returned.

For an asynchronous request the first word is the process ID of the
child process.

For a synchronous request the first word is a termination code fur
nished by the system that describes why the child terminated. The
values returned and their meanings are:

0 = EXIT (normal exit)
1 = Hard error abort
2 = Trap operation
3 = Unintercepted DosKillProcess.

The second word is used to pass the ResultCode specified by the
terminating process on its last DosExit call.

PgmPointer
is the name of the file that contains the program to be executed.
When the environment is passed to the target program, this name
is copied into "po" in the above environment description.

If the string appears to be a fully qualified path (for example: con
tains a : (colon)in the second position and/or contains a "\")the
program is loaded from the indicated drive:directory. If neither of
these are true, and this filename is not found in the current direc
tory, each drive:directory specification in the path defined in the
current program's environment is searched for this file. Any
extension (.xxx) is acceptable for a program filename.

Returns

IF AX = 0 then NO error

ELSE AX = error code

2-49

DosExecPgm -
Execute Program

Family API Considerations
Some options operate differently in the DOS mode than they do in the
OS/2 mode. Therefore, the following restrictions apply to
DosExecPgm when coding in the DOS mode:

• If ExecFlags =non-zero, DosExecPgm returns the following error
code, ERROR_INVALID_DATA.

• This field must be set to 0. This value will not be related to the
PIO of the program being executed.

Remarks
The target program is located and loaded into storage if necessary.
A process is created and executed for the target program. If asyn
chronous execution is not indicated, the requesting process
waits pending completion of the target program

The new process is created with an address space separate from its
parent, that is, a new LDT built for the process.

The new process inherits all the file handles and pipes from its parent
without the same access rights. Files are inherited except those
opened with no inheritance indicated. Pipes are inherited.

The parent process has control of the meanings of standard input,
output, and error. The parent can write a series of records to a file,
open the file as standard input, open a listing file as standard output,
and execute a sort program that takes input from standard input and
writes to standard output.

To test whether a program is running detached, use the following
method. Issue a video call, (for example, VioGetAnsi). If the call is
not issued within a video popup and the process is detached, the
video call will return error code ERROR_VIO_DETACHED in AX.

2-50

DosExit -
Exit Program

Purpose
DosExit is issued when a thread completes executing. The current
thread or process ends.

Calling Sequence
EXTRN DosExit:FAR

PUSH WORD ActionCode
PUSH WORD ResultCode
CALL DosExit

Where

ActionCode

;Indicates end thread or process
;Result Code to save for DosCwait

indicates whether to terminate the process and all its threads.

If value= 0
the current thread ends.

If value= 1
all threads in the process end.

ResultCode
is the program's completion code. It is passed to any thread that
issues DosCwait for this process.

Returns
None

Family API Considerations
Some options operate differently in the DOS mode than they do in the
OS/2 mode. Therefore, the following restrictions apply to DosExit
when coding in the DOS mode:

There is no thread support in DOS 3.3, therefore DosExit exits the cur
rently executing program.

If ActionCode = O this option is ignored. It is equivalent to an
ActionCode == 1.

2-51

DosExit -
Exit Program

Remarks

If the ending thread is the last thread in a process, or if the request
indicates to terminate all threads in the process, the process also ter
minates. All but one thread is terminated and that thread executes
routines in the DosExitlist list.

When this is completed, this thread and all other resources owned by
this process are released. Since the system can start threads on
behalf of an application, a request intended to terminate a process
must specify ActionCode = 1 regardless of how many threads the
application author believes to be executing.

Do not terminate thread 1 without terminating the process. When
thread 1 ends, any monitors or signal processing routines set for this
process will end. To prevent unpredictable results, specify action
code= 1 when ending thread 1 to ensure the process ends.

2-52

Purpose

DosExitCritSec -
Exit Critical Section of Execution

DosExitCritSec re-enables thread switching for the current process.

Calling Sequence
EXTRN DosExitCritSec:FAR

CALL DosExitCritSec

Returns

IF AX = 0 then NO error

ELSE AX = error code

Remarks
DosExitCritSec executes after DosEnterCritSec and restores normal
thread switching to the threads in a process.

A count of the number of outstanding DosEnterCritSec requests is
maintained. The count is increased on DosEnterCritSec requests and
decreased on DosExitCritSec requests. A DosExitCritSec request
does not cause normal thread dispatching to restore while the count
is greater than zero. This count is maintained in a word and if this
word is decremented below zero (underflow), the count is set to zero,
an error is returned, and the operation does not execute.

2-53

DosExitList -
Routine List for Process Termination

Purpose
DosExitlist maintains a list of routines that execute when the current
process ends.

Calling Sequence
EXTRN DosExitList:FAR

PUSH WORD Function
PUSH DWORD RtnAddress
CALL DosExitList

Where

Function

;Function request code
;Routine address

indicates whether to add or remove a routine address from the
list. The values and their meanings are:

1 =Add address to termination list
2 = Remove address from termination list
3 =Termination processing complete, transfer to next
address on termination list.

RtnAddress
is the routine to be executed.

Returns

IF AX = 0 then NO error

ELSE AX == error code

Remarks
DosExitlist defines a routine that gets control when a process com
pletes executing. Multiple routines can be defined to receive control
when a process terminates. For each process, OS/2 maintains a list
of routines. When the process terminates, it transfers control to each
address on the list. If there are multiple addresses on the list, each
get control in an indeterminate order.

2-54

DosExitList -
Routine List for Process Termination

DosExitlist can be used in a library module to free resources or
semaphores left busy when a client program ends. Before trans
ferring control to the routines on the termination list, OS/2 resets the
stack to its initial value. Transfer is by way of a JMP instruction. The
routine must be in the address space of the terminating process.
When complete the termination routine at that address issues
DosExitlist with Function = 3. Control is then transferred to another
address on the exit list. When all addresses are serviced, the
process completes exiting.

It is important that the exit routines be short and fail-safe. If a routine
does not issue a DosExitlist Function 3, the process stops, and
OS/2 prevents termination.

When DosExitlist routines execute, the process is in a state of partial
termination. To insure good response there should be minimum
delay in allowing termination to complete. All threads except the one
executing the DosExitlist routines are destroyed.

Most OS/2 system calls are valid in a DosExitlist routine, however,
certain functions such as DosCreateThread and DosExecPgm are not.
When the exit list routine receives control, the first parameter on the
stack (located at SS:SP+4) contains an indicator that explains why
the process ended. The values provided are the same as those pro
vided by the system as termination codes on DosCwait or
DosExecPgm requests. The values returned and their meanings are:

0 =EXIT (normal exit).
1 = Hard error abort
2 = Trap operation
3 = Un-intercepted DosKillProcess.

2-55

,· ·''.,..-< ,

DosFlleLocks --
FHe Lock, Manager

Purpose
DosFilelocks locks and unlocks a range in an opened file.

Calling Sequence
EXTRN DosFilelocks:FAR

PUSH WORD FileHandle
PUSH@ OTHER UnlockRange
PUSH@ OTHER LockRange
CALL DosFilelocks

Where

FlleHandle
is the file handle.

UnLockRange

;File handle
;Unlock range
;Lock range

is the range to be unlocked, specified as a double-word pair.

The first double-word is the FileOffset where the locked area
begins.

The second double-word is the Rangelength.

A null pointer to UnlockRange specifies unlocking is not required.

LockRange
is the range to be locked, specified as a double-word pair.

The first double-word is the FileOffset where the locked area
begins.

The second double-word is the Rangelength.

A null pointer to LockRange specifies locking is not required.

Returns

IF AX = 0 then NO error

ELSE AX = error code

2-56

Remarks

DosFileLocks -
File Lock Manager

DosFilelocks provides a mechanism for excluding other processes
read/write access to regions of a file. DosFilelocks is used when a
file is opened using deny read or deny none sharing modes or when
the file is opened for read/write and deny write sharing mode only.
The locked regions can be anywhere in the logical file.

Locking beyond end-of-file is not an error. A region should only
remain locked for a short time. Duplicating the handle duplicates
access to the locked regions. Access to the locked regions is not
duplicated across the DosExecPgm system cal I. The method for
using locks is to lock the desired region and examine the error code.

If unlocking is specified, the function first unlocks the specified area
using UnlockRange. After UnlockRange is processed, then the
locking of a range (if specified via LockRange) is done.

A lock range must be cleared of any locked subranges or locked
overlapping ranges. When a file with locks closes, the locks release
in no defined order. When an open file containing an open file with
locks terminates, the file closes and the locks release.

2-57

(ig~~f1i.,4¢~19•e£·:
.:~19~~}fi.n.e;t·.~~nd1•·

Purpose
DosFindClose closes the association between a directory handle and
a DosFindFirst or DosFindNext directory search function.

Calling Sequence
EXTRN DosFindClose:FAR

PUSH WORD DirHandle
CALL DosFindClose

Where

DirHandle

;Directory search handle

is the handle previously associated with a DosFindFirst by the
system, or used with a DosFindNext directory search function.

Returns

IF AX = 0 then NO error

ELSE AX = error code

Remarks
When DosFindClose is issued, a subsequent DosFindNext call for the
closed DirHandle will fail unless an intervening DosFindFirst has
been issued specifying DirHandle.

2-58

DosFindFirst -
Find First Matching File

Purpose
DosFindFirst finds the first set of filenames that match a given file
specification.

Calling Sequence
EXTRN DosFindFirst:FAR

ASCIIZ
WORD
WORD
OTHER
WORD
WORD
DWORD

FileName
DirHandle
Attribute
ResultBuf
ResultBufLen
SearchCount
e

PUSH@
PUSH@
PUSH
PUSH@
PUSH
PUSH@
PUSH
CALL DosFindFirst

Where

FlleName

;File path name
;Directory search handle
;Search attribute
;Result buffer
;Result buffer length
;Number of entries to find
;Reserved (must be 0)

is the path name of the files to be found.

DirHandle
is the directory handle associated by the system with a specific
request. A DirHandle value of 0001H is defined as always avail
able. A DirHandle value of FFFFH allocates a handle to the user.
The handle is returned by overwriting the FFFFH. Reuse of this
DirHandle in another DosFindFirst closes the association with the
previous DosFindFirst and opens a new association.

Attribute
is the attribute used to search for the file.

If Attribute is 0, normal file entries are found. Entries for subdirec
tories, hidden, and system files, are not returned.

If Attribute is set for hidden or system files, or directory entries, it
is considered an inclusive search. All normal file entries plus all
entries matching the specific attributes are returned. Set attribute
to hidden +system + directory (all three bits on) to look at all
directory entries except the volume label.

2-59

DosFindFirst -
Find First Matching File

Attribute cannot specify the volume label. Volume labels are
queried using DosQFslnfo.

ResultBuf
is where the information is returned. It contains one or more
entires of the following format:

2 bytes -
2 bytes -
2 bytes -
2 bytes -
2 bytes -
2 bytes -
2 bytes -
2 bytes -
2 bytes -
2 bytes -
2 bytes -
1 byte -
n bytes -

File date of creation
File time of creation
File date of last access
File time of last access
File date of last write
File time of last write
File end of data (low word)
File end of data (high word)
file allocation (low word)
file allocation (high word)
File attribute
Length of of ASCllZ name string
ASCllZ name string.

This information is as accurate as the most recent DosClose or
DosBufReset.

ResultBufLen
is the length of ResultBuf.

SearchCount
is the number of matching entries requested in ResultBuf. On
return, this field contains the number of entries placed into
ResultBuf.

Returns

IF AX= 0 then NO error

ELSE AX = error code

2-60

DosFindFirst -
Find First Matching File

Family API Considerations
Some options operate differently in the DOS mode than they do in
OS/2 mode. Therefore, the following restrictions apply to
DosFindFirst when coding in the DOS mode:

DirHandle must always equal one or FFFFH on the initial call to
DosFindFirst. Subsequent calls to DosFindFirst must have a
DirHandle of 1 unless a DosFindClose had been issued: in that case,
one or FFFFH is al lowed.

Remarks
DosFindNext uses the directory handle to repeat the related
DosFindFirst.

To find all files that match a given pattern, issue DosFindFirst to find
the first file. Repeatedly issue DosFindNext to find the next file
(specify the DirHandle returned by DosFindFirst) until the return code
indicates ERROR_NO_MORE_FILES is returned. Finally, issue
DosFindClose to close the directory handle.

The time is mapped in the bits as follows:

15 14 13 12 11 10 g a 1 6 5 4 3 2 1 0
h h h h h m m m m m m x x x x x

Where:

hh binary number of hours (0-23)
mm binary number of minutes (0-59)
xx binary number of two-second increments

Note: The time is stored with the least significant byte first.

The mm/dd/yy are mapped in the bits as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
y y y y y y y m m m m d d d d d

Where:

mm 1-12
dd 1-31
yy 0-119 (1980-2099)

2-61

DosFindFirst -
Find First Matching File

The date is stored with the least significant byte first.

The file name in FileName can contain global characters.

File date/time of creation and file date/time of last access are not
supported in this release and are returned as zeros.

2-62

DosFindNext -
Find Next Matching File

Purpose
DosFindNext locates the next set of directory entries that match the
name specified in the previous DosFindFirst or DosFindNext call.

Calling Sequence
EXTRN DosFindNext:FAR

PUSH WORD DirHandle ;Directory handle
PUSH@ OTHER ResultBuf ;Result buffer
PUSH WORD ResultBufLen ;Result buffer length
PUSH@ WORD SearchCount ;Number of entries to find
CALL DosFindNext

Where

DirHandle
is the handle associated with a previous DosFindFirst or
DosFindNext function call.

ResultBuf
is where the file system returns the results of the qualified direc
tory search. The information returned is as accurate as the most
recent DosClose or DosBufReset.

2 bytes -
2 bytes -
2 bytes -
2 bytes -
2 bytes -
2 bytes -
2 bytes -
2 bytes -
2 bytes -
2 bytes -
2 bytes -
1 byte -
n bytes -

File date of creation
File time of creation
File date of last access
File time of last access
File date of last write
File time of last write
File end of data (low word)
File end of data (high word)
File allocation (low word)
File allocation (high word)
File attribute
Length of ASCllZ name string
ASCllZ name string.

2-63

DosFindNext -
Find Next Matching File

ResultBufLen
is the length of ResultBuf.

SearchCount
is where the number of matching entries requested in ResultBuf
are located. The file system stores the number of entries actually
returned.

Returns

IF AX = 0 then NO error

ELSE AX = error code

Family API Considerations
Some options operate differently in the DOS mode than they do in
OS/2 mode. Therefore, the following restriction applies to
DosFindNext when coding in the DOS mode:

• DirHandle must always equal 1.

Remarks
An error code returns if no matching files are found.

For more information refer to "DosFindFirst - Find First Matching
File" on page 2-59.

File date/time of creation and file date/time of last access are not
supported in this release and are returned as zeros.

2-64

DosflagProcess -
Set Process External Event Flag

Purpose
DosFlagProcess allows one process to set an "external event" flag
for another.

Calling Sequence
EXTRN DosFlagProcess:FAR

PUSH WORD ProcessID
PUSH WORD ActionCode
PUSH WORD Flagnum
PUSH WORD Flagarg
CALL DosFlagProcess

Where

ProcesslD

;Process ID to flag
;Indicate to flag descendants
;Flag number
;Flag argument

is the ID of the process or root process of the process tree, for
which the flag is to be set.

ActionCode
indicates whether to flag descendant processes in addition to the
process indicated by ProcesslD.

If value= O
the indicated process and all its descendants processes
(except detached processes), will be flagged. The indicated
process must be the current process, or must have been
created by the current process as a non-detached process. If
the indicated process terminates, its descendants are still
flagged.

If value= 1
only indicated process will be flagged. Any process can be
specified.

Flagnum
is the number of the flag to be set:

0 =flag A
1 =flag B
2 =flag C

2-65

DosFlagProcess -
Set Process External Event Flag

Flagarg
is an argument passed to indicated processes.

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks
User flags are signals whose action is defined by the user. By
default, a user flag is ignored by a process. A process can use
DosSetSigHandler to install a signal handler for the signal number
corresponding to the user flag (SIGPFA is the signal number corre
sponding to user flag A etc.). The process is alerted, via the signal
mechanism, when it has been flagged. The process will then be
alerted, via the signal mechanism, when it has been flagged. A
process can also specify that the flag action is to be ignored and that
an error code is to be returned to the flagger.

2-66

DosfreeModule -
Free Dynamic L~nk Module

Purpose
DosFreeModule frees the reference to a dynamic link module for a
process. When the dynamic link module is no longer needed by any
process, the module is freed from system memory.

Calling Sequence
EXTRN DosFreeModule:FAR

PUSH WORD ModuleHandle ;Module handle
CALL DosFreeModule

Where

ModuleHandle
is the handle returned by DosloadModule for the dynamic link
module to be freed.

Returns

IF AX = 0 then NO error

ELSE AX = error code

Remarks
The module identified by the handle must be loaded through
DosloadModule. An error is returned if the handle is invalid.

When a function completes, the module handle is no longer valid and
is not used to reference the dynamic link module. Procedure entry
addresses returned for this module are also no longer valid and
cause a protection fault if they are invoked.

2-67

OosFreeSeg -
Free .. Segment

Purpose
DosFreeSeg deallocates a memory segment.

Calling Sequence
EXTRN DosFreeSeg:FAR

PUSH WORD Selector
CALL DosFreeSeg

Where

Selector

;Selector

is the selector of the segment to be freed.

Returns

IF AX = 0 then NO error

ELSE AX = error code

Family API Considerations
Some options operate differently in the DOS mode than they do in
OS/2 mode. Therefore, the following restriction applies to
DosFreeSeg when coding in the DOS mode:

If DosFreeSeg is issued on a CSAliased segment it deallocates the
associated memory. This is inconsistent with the OS/2 mode,
because DosFreeSeg must be performed on both the original and
CSAliased selectors.

2-68

DosFreeSeg -
Free Segment

Remarks
DosFreeSeg is designed to free memory segments: shared segments,
unshared segments, memory allocated by DosAllocSeg or
DosAllocHuge and CS alias created by DosCreateCSAlias.

The CS alias selector is not affected if the data selector for the
aliased segment is passed to DosFreeSeg. Procedures in this
segment can continue to be referenced.

DosFreeSeg decrements the reference count for shared segments.
When the reference count is 0, the memory is deallocated.

2-69

oe>s6e1c:o11aie .~
Get Collate Table

Purpose
DosGetCollate obtains a collating sequence table (for characters OOH
through FFH) that resides in the country information file. It is used by
the SORT utility to sort text according to the collating sequence.

Calling Sequence
EXTRN DosGetCollate:FAR

PUSH WORD
PUSH@ OTHER
PUSH@ OTHER

Length
Structure
MemoryBuf fer

PUSH@ WORD Datalength
CALL DosGetCollate

Where

Length

;Length of data area provided
;Input data structure
;Data area to contain the
; collate table
;Length of table

is the byte length of the data area (MemoryBuffer) provided by the
caller. A length value of 256 is sufficient.

Structure
is a two word input data structure where:

word O
Country Code (0 - default country)

word 1
Code Page ID (0 - current process code page).

MemoryBuffer
is the area where the collating table is returned. This memory
area is provided by the caller. The size of the area is provided by
the input parameter Length and should be at least 256 bytes. If it
is too small to hold all the available information then as much
information as possible is provided in the available space (in the
order in which the data would appear). If the amount of returned
data does not fill the memory area provided by the caller, the
unaltered memory is set at 0. The buffer format for the returned
information follows:

2-70

1 Byte = sort weight of ASCII (0)
1 Byte = sort weight of ASCII (1)

Additional values in collating order:

1 Byte = sort weight of ASCII (255)

Data Length

DosGetCollate -
Get Collate Table

is where the length in bytes of the collate table is returned.

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks
The returned country dependent information may be for the default
country and current process code page or for a specific country and
code page. For more information "DosSetCp - Set Code Page" on
page 2-222.

2-71

DosGetCp .~

Get Process. Code. Page

Purpose
DosGetCp allows a process to query the current process code page
and the prepared system code pages.

Calling Sequence
EXTRN DosGetCp:FAR

PUSH WORD Length ;Length of list
PUSH@ OTHER CodePageList ;List (returned)
PUSH@ WORD DataLength ;Length of returned list
Call DosGetCp

Where

Length
is the length in bytes (should be at least 2), of CodePagelist.

CodePageList
is the area where the code page information is returned. If
CodePagelist length is too small to hold all the available informa
tion, then as much information as possible is provided in the avail
able space. The format of the information returned in this list is:

1 word = Current process code page
N words = Other prepared system code pages.

Data Length
is the length in bytes of the data returned.

Returns

IF AX= O then NO error

ELSE AX = error code

2-72

Family API Considerations

DosGetCp -
Get Process Code Page

Some options operate differently in the DOS mode than they do in
OS/2 mode. Therefore, the following restriction applies to DosGetCp
when coding in the DOS mode:

The current process code page, and at most one prepared system
code page is returned.

Remarks
If the process code page identifier was previously set by DosSetCp or
inherited by a process, it is returned to the caller. The current
process code page identifier is returned by a two byte input list.

2-73

oc>•~etc-tltnfo,
:t ~·,- ::~ounlry l,nfo~ma~io(l

Purpose
DosGetCtrylnfo obtains country dependent formatting information that
resides in the country information file.

Calling Sequence
EXTRN DosGetCtryinfo:FAR

PUSH
PUSH@
PUSH@
PUSH@
CALL

WORD Length
OTHER Structure
OTHER MemoryBuf fer
WORD DataLength
DosGetCtryinfo

Where

Length

;Length of data area provided
;Input data structure
;Data area to be filled by the function
;Length of data (returned)

is the byte length of the data area (MemoryBuffer) provided by the
caller. This length should not be less than 38 bytes.

Structure
is a two word input data structure where:

word 0
Country Code (0 - default country)

word 1
Code Page ID (0 - current process code page).

MemoryBuffer
is the area where the country dependent information is returned.
This memory area is provided by the caller. The size of the area is
provided by the input parameter Length and should be at least 38
bytes. If it is too small to hold all the available information as
much information as possible is provided in the available space.
If the amount of data returned is not enough to fill the memory
area provided by the caller the memory that is unaltered by the
available data is set at 0. The format of the information returned in
this buffer is:

2-74

1 Word -
1 Word -
1 Word -

5 Bytes -
2 Bytes -
2 Bytes -
2 Bytes -
2 Bytes -
1 Byte -
Bit 0 -

Bit 1 -

Bit 2 -

1 Byte -

1 Byte -

2 Words -
2 Bytes -
5 Words -

Data Length

Country Code
Code Page ID

DosGetCtrylnfo -
Get Country Information

Date format: O = mm/dd/yy, 1 = dd/mm/yy, 2 =
yy/mm/dd
Currency indicator, null terminated
Thousands separator, null terminated
Decimal separator, null terminated
Date separator, null terminated
Time separator, null terminated
Bit field for currency format
1 = currency indicator follows money value and 0 =
currency indicator precedes money value.
Number of spaces (0 or 1) between currently indi
cator and money value.
When this bit is set, ignore first two bits; currency
indicator replaces decimal indicator.
Binary number of decimal places used in currency
indication.
Time format for file directory presentation:

• Bit 0 = 1 - 24 hour
• Bit 0 = 0 - 12 hour with "a" or "p".

Reserved (set to 0).
Data list separator, null terminated.
Reserved (set to 0).

is where the length in bytes of the country dependent information
is returned.

Returns

IF AX = 0 then NO error

ELSE AX = error code

2-75

DosGetCtrylnfo -
Get Country Information

Family API Considerations
Some options operate differently in the DOS mode than they do in
OS/2 mode. Therefore, the following restrictions apply to
DosGetCtrylnfo when coding in the DOS mode:

Not all country information is available in DOS 3.3.

Remarks
The returned country dependent information may be for the default
country and current process code page or for a specific country and
code page. For more information on code page, see "DosSetCp
Set Code Page" on page 2-222.

2-76

Purpose

DosGetDateTlme -
Get Current Date and Time

DosGetDateTime gets the current date and time maintained by the
operating system.

Calling Sequence
EXTRN DosGetDateTime:FAR

PUSH@ OTHER DateTime
CALL DosGetDateTime

;Date/time structure (returned)

Where

Date Time
is a structure that receives the following data items:

-Hour is current hour
-Minute is current minute
-Second is current second
-Hundredth is current hundredths of a second
-Day is current day
-Month is current month
-Year is current year

BYTE 0
BYTE 1
BYTE2
BYTE3
BYTE4
BYTES
WORD6
WORDS -Timezone is minutes from UTC (Universal Time Coor-

dinate)
BYTE 10 -DayofWeek is the current day of the week.

Note: The numbers following BYTE and WORD in the description of
the above structure, represent decimal offset values from the begin
ning of the structure.

2-77

DosGetDateTime -
Get Current Date and Time

Returns
AX=O

Remarks
The DayofWeek value is based on Sunday equal to 0. Timezone is
the difference in minutes between the current time zone and UTC.
This number is positive if it is earlier than UTC and negative if it is
later than UTC. For eastern standard time, this value is 300 (5 hours
earlier than UTC).

The application need not call this function to obtain the date or time.
The address of memory containing a continuously updated date and
time is obtained from the DosGetlnfoSeg function. Applications
written to the family API cannot depend on the availability of
DosGetlnfoSeg.

2-78

DosGetDBCSEv -
Get DBCS Environmental Vector

Purpose
DosGetDBCSEv obtains a DBCS (double byte character set) environ
mental vector that resides in the country information file.

Calling Sequence
EXTRN DosGetDBCSEv:FAR

PUSH WORD
PUSH@ OTHER
PUSH@ OTHER

Length
Structure
MemoryBuff er

CALL DosGetDBCSEv

Where

Length

;Length of data area provided
;Input data structure
;Data area to contain
; the infonnation

is the byte length of the data area (MemoryBuffer) provided by the
caller. This value should be at least 10.

Structure
is a two word input data structure where:

word 0
Country Code (0 - default country)

word 1
Code Page ID (0 - current process code page).

MemoryBuffer
is where the country dependent information for the DBCS environ
mental vector is returned. This memory area is provided by the
caller. The size of the area is provided by the input parameter
Length. If it is too small to hold all the available information then
as much information as possible is provided in the available
space The format of the information returned in this buffer is:

2 Bytes - First range definition for DBCS lead byte values

• Byte 1 = Binary start value (inclusive) for range one
• Byte 2 = Binary stop value (inclusive) for range

one

2-79

DosGetDBCSEv -
Get DBCS Environmental Vector

2 Bytes - Second range definition

• Byte 1 =Binary start value for range two
• Byte 2 = Bi nary stop value for range two

2 Bytes - Nth range definition

• Byte 1 = Binary start value for Nth range
• Byte 2 =Binary stop value for Nth range

2 Bytes Two bytes of binary 0 terminate list.

For example:

DB 81H,9FH
DB E0H, FCH
DB e,e

Returns

IF AX = 0 then NO error

ELSE AX = error code

Remarks

The returned DBCS environmental vector may be for the default
country and current process code page or for a specific country and
code page. For more information on code page see "DosSetCp
Set Code Page" on page 2-222.

2-80

DosGetEnv -
Get Address of Process Environment String

Purpose
DosGetEnv returns the address of the process environment string for
the current process.

Calling Sequence
EXTRN DosGetEnv:FAR

PUSH@ WORD EnvSegment
PUSH@ WORD CmdOff set
CALL DosGetEnv

Where

EnvSegment

;Selector (returned)
;Co11111and line offset (returned)

is where the selector for the environment segment is returned.

CmdOffset
is where the offset to the command line within the environment
segment is returned.

Returns

IF AX= O then NO error

ELSE AX= error code

Remarks
This call can be used by library routines that need to determine the
environment for the current process.

2-81

DosGetHugeShift
Get Shift Count

Purpose
DosGetHugeShift returns a shift count used to derive the selectors
that address memory allocated with DosAllocHuge.

Calling Sequence
EXTRN DosGetHugeShift:FAR

PUSH@ WORD ShiftCount
CALL DosGetHugeShift

Where

ShiftCount

;Shift Count (returned)

is where the shift count is returned.

Returns
AX=O

Remarks
To compute the next sequential selector in a huge memory area, take
the value 1, shift it left by the number of bits specified in shift count.
Use the resulting value as an increment to add to the previous
selector (using the selector returned by DosAllocHuge as the first
selector) Refer to "DosAllocHuge - Allocate Huge Memory" on
page 2-2 for more information regarding selector use.

2-82

DosGetlnfoSeg -
Get Address of System Variables Segment

Purpose
DosGetlnfoSeg returns the address of a global and process local data
segment used to determine the value of several items of general
information.

Calling Sequence
EXTRN DosGetinfoSeg:FAR

PUSH@ WORD GlobalSeg
PUSH@ WORD LocalSeg
CALL DosGetinfoSeg

Where

GlobalSeg

;Global segment (selector}
;Local segment (selector}

is where the selector for the global information segment is
returned.

Local Beg
is where the selector for the local information segment is
returned.

Returns
AX=O

Remarks
Items of general interest are kept in the global information segment.
Items of information specific to a particular process are kept in the
local information segment. This information can be directly read by
the application program. Both these segments are defined as
read/only segments. The application program cannot modify this
data.

2-83

DosGetlnfoSeg -
Get Address of System Variables Segment

Format of the Global Information Segment

Data
Item
TIME

DATE

VERSION

SYSTEM
STATUS

2-84

Size
DD Time from 1-1-1970 in seconds
DD Milliseconds
DB Hours
DB Minutes
DB Seconds
DB Hundredths
OW Timezone (minutes from UTC, -1 =timezone is

undefined)
OW Timer interval (units= 0.0001 seconds)
DB Day
DB Month
OW Year
DB Day-of-week (0 =Sunday, 1 = Monday, ... etc.)
DB Major version number
DB Minor version number
DB Revision letter
DB Current foreground session

DB Maximum number of sessions
DB Shift count for huge segments
DB OS/2 mode only indicator (0 =DOS mode and

OS/2 mode, 1 = OS/2 mode only)
OW PIO of last process to do a KbdCharln or

KbdGetFocus in foreground session.

DosGetlnfoSeg -
Get Address of System Variables Segment

Data
Item
SCHEDULER
PARMS

BOOT DRIVE
SYSTEM
TRACE
FACILITY
TRACE
FLAGS

DB

DB
ow
ow
ow
DB

Size
Dynamic variation flag (=1 if enabled,= O if
absolute.)
Maximum wait (seconds)
Minimum timeslice (milliseconds)
Maximum timeslice (milliseconds)
Boot drive number (1 = A, 2 = B, ... etc.)
32 - System Trace Major Code flag bits. Each
bit corresponds to a trace major code from OOH
to FFH. The most significant bit (left-most) of
the first byte, corresponds to major code OOH.
Bit=O, trace disabled; Bit=1, trace enabled.

2-85

DosGetlnfoSeg -
Get Address of System Variables Segment

Format of the Local Information Segment

Data
Item Size
MISC OW Current process ID

OW Process ID of parent
OW Priority of current thread

• High-Order byte = Priority class
• Low-Order byte = Priority level

OW Thread ID of current thread
OW Session
OW Unused
OW Current process has keyboard focus. (-1

implies yes, 0 implies no)
DB Current process requires DOS mode. (=1

implies requires DOS mode).

The application program must be careful when referencing the date
and/or time fields in the Global Information Segment. A timer inter
rupt can be received by the system in between the instructions that
read the individual fields, changing the data in these fields. For
example, if the time is currently 11:59:59 on Tuesday, 6/2/87, the
program can read the hours field (23). A timer interrupt can now be
received, changing the time to 12:00:00 on Wednesday, 6/3/87. The
program will now read the rest of the time field (0 minutes) and the
date field. The program would then think the current time and date is
11 :00:00 on Wednesday, 6/3/87, which is incorrect.

The application program should read all time and date fields it is
interested in as quickly as possible. It can then compare the least
significant time field it is interested in (milliseconds, hundredths,
seconds, or minutes) against the current value in the Global Informa
tion Segment. If the value has not changed, the rest of the informa
tion is valid. If the value has changed, the program time and/or date
information should be read again, since the information was updated
while the program was reading it.

2-86

DosGetMachineMode -
Return Current Mode of Processor

Purpose
DosGetMachineMode returns the current mode of the processor,
whether the processor is running in the DOS mode or the OS/2 mode.
This allows an application to determine whether a dynamic link call is
valid or not.

Calling Sequence
EXTRN DosGetMachineMode:FAR

PUSH@ BYTE MachineMode ;Byte to receive mode
CALL DosGetMachineMode

Where

MachineMode
is where the value to indicate the current processor mode is
returned. This value may be:

0 =DOS mode
1 = OS/2 mode

Returns
AX=O

Remarks
All dynamic link calls are available to an application if the
MachineMode values indicate the program is in OS/2 mode. This
method provides a self-tailoring application that allows the applica
tion to adapt to the execution environment by limiting or enhancing
the functions it provides.

If the MachineMode values indicate the program is in DOS mode, the
application is limited to a subset of dynamic link calls listed in the
Family API.

2-87

DosGetlVl•ssage -
System Message with Variable Text

Purpose
DosGetMessage retrieves a message from a message file and inserts
variable information into the body of the message.

Calling Sequence
EXTRN DosGetMessage:FAR

PUSH@
PUSH
PUSH@
PUSH
PUSH
PUSH@
PUSH@
CALL

OTHER IvTable
WORD IvCount
OTHER DataArea
WORD Data Length
WORD MsgNumber
ASCIIZ FileName
WORD MsgLength
DosGetMessage

Where

Iv Table

;Table of variables to insert
;Number of variables
;Message buffer
;Length of buffer
;Number of the message
;Message path and file name
;Length of message (returned)

is a list of double-word pointers. Each pointer points to an ASC//Z
or null-terminated DBCS string (variable insertion text). 0 to nine
strings can be present.

lvCount
is 0-9, the count of variable insertion text strings. If lvCount is 0,
lvTable is ignored.

DataArea
is where the requested message is returned. If the message is
too long to fit in the caller's buffer, as much of the message text
will be returned as possible, with the appropriate error return
code.

Data Length
is the length (in bytes) of the user's storage area.

MsgNumber
is the message number requested.

2-88

DosGetMessage -
System Message with Variable Text

FlleName
is the optional drive and path, and file name of the file, where the
message can be found. If messages are bound to the .EXE file
using MSGBIND utility, then filename is the name of the message
file from which the messages will be extracted.

MsgLength
is where the length in bytes, of the message is returned.

Returns

IF AX = O then NO error

ELSE AX = error code

Family API Considerations
Some options operate differently in the DOS mode than in OS/2
mode. Therefore, the following restriction applies to DosGetMessage
when coding in the DOS mode:

If the message file name is not a fully qualified name,
DosGetMessage searches the root di rectory of the default drive for
the message file, instead of the root directory of the startup drive.

Remarks
If lvCount is greater than 9, DosGetMessage returns an error that
indicates lvCount is out of range. If the numeric value of x in the %x
sequence for % 1-%9 is less than or equal to lvCount, text insertion
by substitution for %x, is performed for all occurrences of %x in the
message. Otherwise text insertion is ignored and the %x sequence
is returned in the message unchanged. Text insertion is performed
for all text strings defined by lvCount and lvTable.

Variable data insertion is not dependent on blank character delim
iters nor are blanks automatically inserted.

For warning and error messages, the message ID (seven alphanu
meric characters consisting of a three-character component ID con
catenated with a four-digit message number) followed by a colon and
a blank character are returned to the caller as part of the message

2-89

DosGetMessage -
System Message with Variable Text

text. (DosGetMessage determines the type of message based on the
message classification generated in the output file of the MKMSGF
utility).

The following is an example of a sample error message returned with
the message ID:

SYS0100: File not found

DosGetMessage retrieves messages previously prepared by the
utility MKMSGF to create a message file, or MSGBIND to bind a
message segment to an .EXE file. DosGetMessage tries to retrieve
the message from RAM in the message segment bound to the .EXE
program. If the message cannot be found, DosGetMessage retrieves
the message from the message file on DASO (direct access storage
device, such as floppy diskette or fixed-disk). If the message cannot
be found, then DosGetMessage retrieves the message from the
message file on the fixed disk or diskette.

If DosGetMessage is unable to find the specified directory path,
DosGetMessage searches the following directories for the message
file:

• Directories listed in the DPATH statement (OS/2 mode only)
• Directories listed in the APPEND statement (DOS mode. only)

If a message cannot be retrieved because of a DASO error or file not
found condition, a default message is placed in the user's buffer area.
A message is placed in the buffer area based on the following error
conditions:

• The message number cannot be found in the message file.
• The message file cannot be found.
• The system detected a disk error trying to access the message

file, or the message file format is incorrect.
• lvCount is out of range.
• A system error occurred trying to allocate storage.

When these conditions occur, the default message allows the applica
tion program to issue a message and prompt that enables recovery
opportunity.

2-90

DosGetMessage -
System Message with Variable Text

The residency of the message in RAM (EXE bound) or on DASO is
transparent to the caller and handled by DosGetMessage. In either
case the message is referenced by message number and file name.

In order for DosGetMessage to be properly resolved, an application
must be linked with DOSCALLS.LIB.

2-91

DosGetModHandle -
Get Dynamic Link Module Handle

Purpose
DosGetModHandle returns a handle to a previously loaded dynamic
link module.

Calling Sequence
EXTRN DosGetModHandle:FAR

PUSH@ ASCIIZ ModuleName ;Module name string
PUSH@ WORD ModuleHandle ;Module handle (returned)
CALL DosGetModHandle

Where

ModuleName
contains the dynamic link module name.

Modu/eHandle
is where the handle for the dynamic link module is returned.

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks
This interface provides a mechanism for determining whether a
dynamic link module is loaded.

The module name must match the name of the previously loaded
module. If these names do not match, an error code is returned. The
module name string must contain the 1-8 character module name, not
the name of the file containing the module.

2-92

DosGetModName -
Get Dynamic Link Module Name

Purpose
DosGetModName returns the fully qualified drive, path, FileName,
and extension associated with a referenced module handle.

Calling Sequence
EXTRN DosGetModName:FAR

PUSH WORD ModuleHandle ;Module handle
PUSH WORD BufferLength ;Buffer length
PUSH@ OTHER Buffer ;Buffer (returned)
CALL DosGetModName

Where

ModuleHandle
is handle of the dynamic link module being referenced.

BufferLength
is the maximum length of the buffer, in bytes, where the name is
stored.

Buffer
is the buffer where the fully qualified drive, path, filename, and
extension of the dynamic link module is returned.

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks
An error is returned if the buffer is not large enough.

2-93

:·::D ... ::·o$Gei9'1D' '. '. .. '
l•1irl1::Pr~()ess lQ

Purpose
DosGetPID returns the current process' process ID (PIO), thread ID,
and the PIO of the process that created it.

Calling Sequence
EXTRN DosGetPID:FAR

PUSH@ OTHER ProcessIDsArea ;Process IDs (returned)
CALL DosGetPIO

Where

ProcesslDsArea
is the area where the various IDs are returned.

Returns
AX=O

Remarks
The format of the returned IDs in ProcesslDsArea is illustrated below:

WORD the current process' process IP
WORD the current thread ID
WORD the process ID of the parent.

The process ID may be used to generate uniquely named temporary
files, or for communication via sign~ls.

For an OS/2 mode process only, it is more efficient to obtain these
variables from DosGetlnfoSeg.

2-94

DosGetProcAddr -
Get Dynamic Link Procedure Address

Purpose
DosGetProcAddr returns a far address to a desired procedure within
a dynamic link module.

Calling Sequence
EXTRN DosGetProcAddr:FAR

PUSH WORD ModuleHandle ;Module handle
PUSH@ ASCIIZ ProcName ;Module name string
PUSH@ DWORD ProcAddress ;Procedure address (returned)
CALL DosGetProcAddr

Where

ModuleHandle
is the handle of the dynamic link module where the procedure is
located.

ProcName
is a name string that contains the referenced procedure name.

DosGetProcAddr for entries within the DOSCALLS module are
only supported for ordinal references. References to the
DOSCALLS module by name strings are not supported and will
return an error. Dynamic link ordinal numbers for DOSCALLS rou
tines are resolved by linking with DOSCALLS.LIB.

ProcAddress
is where the procedure address is returned.

Returns

IF AX= 0 then NO error

ELSE AX = error code

2-95

DosGetProcAddr -
Get Dynamic Link Procedure Address

Remarks
If the selector portion of the pointer is null, the offset portion of the
pointer is an explicit entry number (ordinal) within the dynamic link
module. A 32-bit address, consisting of a selector and offset, is
returned for a specified procedure.

2-96

DosGetPrty -
Get Process's Priority

Purpose
DosGetPrty gets the priority of a process or thread in the current
process.

Calling Sequence
EXTRN DosGetPrty:FAR

PUSH WORD Scope
PUSH@ WORD Priority
PUSH WORD ID
CALL DosGetPrty

Where

Scope

;Indicate scope of query
;Priority (returned)
;Process or thread ID

is used to define the scope the request will have.

If value= 0
the priority of the first thread of the indicated process is
returned.

If value= 2
the priority of the indicated thread is returned.

Priority
is a word where the base priority of the indicated process or
thread is placed. The high-order byte of this word is set equal to
the priority class. The low-order byte is set equal to the priority
level.

ID is either a process ID (scope = 0) or a thread ID (scope = 2).
If this operand is equal to 0, the current process or thread is
assumed.

Returns

IF AX = O then NO error

ELSE AX = error code

2-97

DosGetPrty -
Get Process's Priority

Remarks
If scope = O (process) the priority of the first thread of a process is
returned. If that thread has terminated, the
"ERROR_INVALID_THREAD_ID" error code will be returned.

The segment must have been allocated with DosAllocSeg with Flags
bit 1 (0010b) set.

2-98

Purpose

DosGetSeg -
Access Segment

DosGetSeg gets access to a shared memory segment.

_Calling Sequence
EXTRN DosGetSeg:FAR

PUSH WORD Selector
CALL DosGetSeg

Where

Selector

;Selector to access

is used to get access to a segment.

Returns

IF AX = O then NO error

ELSE AX = error code

Remarks
Any process that gains access to a discardable segment through
DosGetSeg, may unlock the segment for discard through calls to
DosUnlockSeg. For example, a process may allocate a discardable
segment that is accessed by another process via DosGetSeg. The
second process may call DosUnlockSeg on that selector until it is
fully unlocked. The segment may be discarded later in the event
memory is nearly full. If the first process accesses the segment,
assuming it is still locked, it will fail. Locking is an attribute of the
segment, not the processes using the segment.

The segment must have been allocated with DosAllocSeg with Flags
bit one (001 Ob) set.

2-99

DosGetShrSeg -
Access Shared Segment

Purpose
DosGetShrSeg accesses a shared memory segment previously allo
cated by another process.

Calling Sequence
EXTRN DosGetShrSeg:FAR

PUSH@ ASCIIZ Name
PUSH@ WORD Selector
CALL DosGetShrSeg

Where

Name

;Name string
;Selector (returned)

is the name string associated with the shared memory segment
to be accessed. The name is an ASCllZ string in the format of an
OS/2 filename in a subdirectory called \SHAREMEM\, for
example, \SHAREMEM\PUBLIC.DAT.

Selector
is where the selector for the shared memory segment is returned.

Returns

IF AX = O then NO error

ELSE AX = error code

Remarks
The reference count for the shared segment is increased. The
selector returned to the process that initially allocated it will be the
same as that returned by the DosAllocShrSeg.

2-100

DosGetVersion -
Get OS/2 Version Number

Purpose
DosGetVersion returns the OS/2 version number.

Calling Sequence
EXTRN DosGetVersion:FAR

PUSH@ WORD VersionWord ;Version number(returned)
CALL DosGetVersion

Where

Version Word
is where the OS/2 version number is returned. The version is
stored with the minor version first.

Returns
AX=O

Remarks
None

2-101

DC>s<aiv.eSeg . ·-
Give Access to Segmen'

Purpose
DosGiveSeg gives another process access to a shared memory
segment.

Calling Sequence
EXTRN DosGiveSeg:FAR

PUSH WORD CallerSegSelector ;Caller's segment selector
PUSH WORD ProcessID ;Process ID of recipient
PUSH@ WORD RecipientSegSelector ;Recipient's segment selector

; (returned)
CALL DosGiveSeg

Where

CallerSegSelector
is the segment selector of the memory segment to be shared.

ProcesslD
is the process ID of the process to receive access to the shared
memory segment.

RecipientSegSelector
is where the recipient's segment selector to access the shared
memory segment is returned.

Returns

IF AX= O ti,en NO error

ELSE AX = error code

Remarks
It is the caller's responsibility to pass the recipient's segment
selector to the recipient using some form of interprocess communi
cation.

Any process that gains access to a discardable segment through
DosGiveSeg may unlock the segment for discard through calls to

2-102

DosGiveSeg -
Give Access to Segment

DosUnlockSeg. For example, a process may allocate a discardable
segment and give it to another process by way of DosGiveSeg. The
second process may then call DosUnlockSeg on that selector until it
is fully unlocked. The segment may be discarded later in the event
memory is nearly full. If the first process accesses the segment,
assuming it is still locked, it will fail. Locking is an attribute of the
segment and not of the processes using the segment.

If the memory being given is a huge memory area allocated by
DosAllocHuge, the CallerSegSelector must be the same selector as
that returned by the corresponding DosAllocHuge request: for
example, the selector for the first segment of the huge area. The
returned RecipientSegSelector, which must be passed to the target
process, is for the first segment in the recipient's address space. The
recipient process must use DosGetHugeShift and calculate the
selector values for the remaining segments of the area.

2-103

DosfloldSignal ~
Disable/.Ertable Signals

Purpose
DosHoldSignal temporarily disables or enables signal processing for
the current process.

Calling Sequence
EXTRN DosHoldSignal:FAR

PUSH WORD ActionCode
CALL DosHoldSignal

Where

ActionCode

;Indicate to Disable/Enable Signals

indicates to disable or enable signals intended for the current
process:

If value= O
signals are enabled.

If value= 1
signals are disabled.

Returns

IF AX = O then NO error

ELSE AX = error code

Family API Considerations
Some options operate differently in the DOS mode than they do in the
OS/2 mode. Therefore, the following restriction applies to
DosHoldSignal when coding in the DOS mode:

The only signal recognized in the DOS mode is SIGINTR (Ctrl-C).

2-104

Remarks

DosHoldSignal -
Disable/Enable Signals

DosHoldSignal with ActionCode = 1 causes signal processing (except
SIGTERM and the numeric processor errors) to be postponed until a
DosHoldSignal with ActionCode = 0 is issued. Any signals that occur
while processing is disabled are recognized, but not accepted until
signal recognition is enabled.

To allow for nesting of requests, a count of the number of outstanding
DosHoldSignal requests with ActionCode = 1 are maintained.

DosHoldSignal is used by library routines, subsystems, and similar
code that lock critical sections or temporarily reserve resources
needed to prevent a signal from terminating a task.

Signals can be held for a short period and should be released and
re-held, if necessary. Their guidelines for proper use are similar to
hardware interrupt counterparts such as the CLl/STI instructions.

2-105

DoslnsMessage -
lnsertVariable·•rexfStrings In Message

Purpose
DoslnsMessage inserts variable text string information into the body
of a message. This is useful when messages are loaded before
insertion text strings are known.

Calling Sequence
EXTRN DosinsMessage:FAR

PUSH@
PUSH
PUSH@
PUSH
PUSH@
PUSH
PUSH@
CALL

OTHER IvTable
WORD IvCount
OTHER Msginput
WORD MsginLength
OTHER DataArea
WORD DataLength
WORD MsgLength
DosinsMessage

Where

Iv Table

;Table of variables to insert
;Number of variables
;Address of input message
;Length of input message
;Buffer address to return message
;Length of buffer (returned)
;Length of updated message

is a list of double-word pointers. Each pointer points to an ASCllZ
or null terminated DBCS string (variable insertion text). 0 to nine
strings can be present.

lvCount
is 0-9, the count of variable insertion text strings. If lvCount is 0,
then lvTable is ignored.

Msglnput
is the input message.

MsglnLength
is the length in bytes of the input message.

Data Area
is the user storage where the system returns the updated
message. If the message is too long to fit in the caller's buffer, as
much of the message text as possible will be returned with the
appropriate error return code.

2-106

DoslnsMessage -
Insert Variable Text Strings In Message

Data Length
is the length (in bytes) of the user's storage area.

MsgLength
is where the actual length in bytes of the message is returned.

Returns

IF AX·= O then NO error

ELSE AX = error code

Remarks
If lvCount is greater than 9, DoslnsMessage returns an error indi
cating that lvCount is out of range. A default message is also placed
in the caller's buffer. Refer to "DosGetMessage - System
Message with Variable Text" on page 2-88 for details on the default
messages. If the numeric value of x in the %x sequence for %1-%9
is less than or equal to lvCount, then text insertion, by substitution for
%x, is performed for all occurrences of %x in the body of the
message. Otherwise text insertion is ignored and the %x sequence is
returned unchanged in the message. Text insertion is performed for
all text strings defined by lvCount and lvTable.

Variable data insertion does not depend on a blank character delim
iter nor are blanks automatically inserted.

2-107

DosKiHProcess -
Terminate Process

Purpose
DosKillProcess flags a process to terminate and returns the termi
nation code to its parent (if any).

Calling Sequence
EXTRN DosKillProcess:FAR

PUSH WORD ActionCode
PUSH WORD ProcessID
CALL DosKillProcess

Where

ActionCode

;Indicate to flag descendant processes
;ID of process or root of process tree

indicates whether to flag existing descendant processes in addi
tion to the process indicated by ProcesslD.

If value= 0
the indicated process plus all descendant processes (except
detached processes) are flagged for termination. The indi
cated process must be the current process, or it must have
been created by the current process as a non-detached
process. If the indicated process is terminated, its descend
ants will be flagged for termination.

If value= 1
only the indicated process is flagged for termination. Any
process may be specified.

Process/D
is the process ID of the process or root process, of the process
tree to be flagged for termination.

Returns

IF AX= O then NO error

ELSE AX = error code

2-108

DosKillProcess -
Terminate Process

Remarks

DosKillProcess allows a process to send the termination signal
SIGTERM to another process or group of processes. The default
action of the system will be to terminate each of the processes. A
process may intercept this action by installing a signal handler for
SIGTERM (refer to "DosSetSigHandler - Set Signal Handler" on
page 2-243). In such a case the program will clean up its files and
execute DosExit. If there is no signal handler, the effect on the
process will be the same as if one of its threads had done DosExit for
the entire process. All file buffers are flushed and the handles
opened by the process are closed, but any internal buffers managed
by programs external to OS/2 will not be flushed. An example of
such a buffer could be a C language libraries' internal character
buffer.

The process' parent will get the "un-intercepted DosKillProcess"
code returned when it does a DosCwait call.

2-109

• ··.=··:"'."·'' .. ···•• •.. ·'.,·., · .. •.· .. ·, ..

l)~C>adMQd&Ji~
Load·. Dynamic Link· Module·

Purpose
DosloadModule loads a dynamic link module and returns a handle
for the module.

Calling Sequence
EXTRN DosLoadModule:FAR

PUSH@
PUSH
PUSH@
PUSH@
CALL

OTHER
WORD
ASCIIZ
WORD

Where

ObjNameBuf

ObjNameBuf
ObjNameBufL
ModuleName
ModuleHandle
DosLoadModule

;Object name buffer
;Length of object name buffer
;Module name string
;Module handle (returned)

is a buffer where the name of the object that contributed to the
failure of DosloadModule is returned.

ObjNameBufL
is the length, in bytes, of the buffer described by ObjNameBuf.

ModuleName
is a name string that contains the dynamic link module name.

ModuleHandle
is where the handle for the loaded dynamic link module is
returned.

Returns

IF AX= O then NO error

ELSE AX = error code

2-110

Remarks

DosLoadModule -
Load Dynamic Link Module

If the file is an OS/2 dynamic link module, it is loaded, and a handle
is returned. This handle must be passed to DosFreeModule to free
the dynamic link module. This handle may be passed to
DosGetProcAddr to get the addresses of procedures within the
module, or passed to DosGetModName to get the fully qualified
module name.

The module name string must contain the 1-8 character module
name. The module is assumed to reside in a file whose name is
ModuleName.DLL. This file must be within one of the directories
specified in the library search path. (See configuration statement
LIBPATH in the IBM Operating System/2 User's Reference.)

DosloadModule may not be called from a dynamic library initializa
tion routine if the module to be loaded or any module referenced by it
contains a dynamic link library initialization routine.

2-111

DoslockSeg -
Lock· segment in Memory·.

Purpose
DoslockSeg locks a discardable segment in memory.

Calling Sequence
EXTRN DosLockSeg:FAR

PUSH WORD Selector
CALL DosLockSeg

Where

Selector

;Selector to lock

is the selector of the segment to be locked.

Returns

IF AX= O then NO error

ELSE AX = error code

Remarks
Discardable segments are useful for holding objects that are
accessed for short periods of time and can be regenerated quickly if
discarded. Examples are cache buffers for a data base package,
saved bitmap images for obscured windows, or precomputed display
images for a word processing application.

Allocating objects as discardable allows the memory manager to
reclaim their space when the system is low on memory and they are
not currently being accessed.

When a discardable segment is locked, it still can be moved and
swapped. It can be swapped to disk if necessary, but will not be dis
carded until it is unlocked by DosUnlockSeg.

While locked, a segment may not be discarded. If a segment is dis
carded while unlocked, a subsequent DoslockSeg request for that
segment will return an error code indicating the segment no longer

2-112

DosLockSeg -
Lock Segment in Memory

exists. DosReallocSeg must allocate a fresh copy of the segment,
and its contents must be regenerated by the caller.

DoslockSeg and DosUnlockSeg calls may be nested. If DoslockSeg
is called multiple times to lock a segment the same number of calls
must be made to DosUnlockSeg to unlock the segment. However, if a
segment is locked 255 times it becomes permanently locked. Addi
tional calls to DoslockSeg and DosUnlockSeg will have no effect on
the segment's locked state.

Note that a call to DosAllocSeg with AllocFlags bit 2 (01008) set or a
call to DosReallocSeg, for a segment so allocated, will allocate the
memory, and perform the same action as a call to DoslockSeg.

This function is valid only on segments allocated through
DosAllocSeg with AllocFlags bit two (01008) set.

2-113

DosMal<ePlpe
Create Pipe

Purpose
DosMakePipe creates a pipe.

Calling Sequence
EXTRN DosMakePipe:FAR

PUSH@ WORD ReadHandle
PUSH@ WORD WriteHandle
PUSH WORD PipeSize
CALL DosMakePipe

Where

ReadHandle

;Read handle (returned)
;Write handle (returned)
;Size to reserve for the pipe

is where the read handle for the pipe is returned.

WriteHandle
is where the write handle for the pipe is returned.

PipeSize
is the storage size, in bytes, to reserve for the pipe.

Returns

IF AX = 0 then NO error

ELSE AX = error code

Remarks
Pipes are mechanisms used within a closely related group of proc
esses. There are no control, permission mechanisms, or checks per
formed on operations to pipes.

When there is insufficient space in a pipe for the data being written, a
requesting thread blocks until enough data is removed to allow the
write request to be satisfied. If the parameter size is 0, then the pipe
is created with a default size of 512 bytes.

2-114

DosMakePipe -
Create Pipe

When all users close the handles, a pipe is deleted. If two processes
are communicating by a pipe and the processes reading the pipe
ends, the next write gets the "write to a broken pipe" error code.

2-115

; ~ ,.,., ,,

:;oasl\llemAvai1 : ;: ;·.·.···':<;;:.:

-~·t s'izf)·~t l.rgest ·f=ree ··Me:f11~o .. j:;;,!f ock

Purpose
DosMemAvail returns the size of the largest block of free memory.

Calling Sequence
EXTRN DosMemAvail :FAR

PUSH@ DWORD MemAvailSize ;Size available (returned)
CALL DosMemAvail

Where

MemAvai/Size
is where the size of the largest free block of memory is returned.

Returns
AX=O

Remarks
DosMemAvail allows an application to determine how heavily used
system memory is at a particular time. The returned value is a
"snapshot" which may be valid only at the moment this function is
issued and can be expected to change at any time due to system
activity.

2-116

Purpose

DosMkDir -
Make Subdirectory

DosMkDir creates a specified directory.

Calling Sequence
EXTRN DosMkDir:FAR

PUSH@ ASCIIZ DirName
PUSH DWORD e
CALL DosMkDir

Where

DirName

;New directory name
;Reserved (must be 0)

is the ASCllZ directory path name that specifies a drive.

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks
If any member of the directory path does not exist, the directory path
is not created. On return, a new directory is created at the end of the
specified path.

2-117

DosMonClose -
Close Connection to Device Monito,r

Purpose
DosMonClose terminates character device monitoring. All monitor
buffers associated with this process are flushed and closed.

Calling Sequence
EXTRN DosMonClose:FAR

PUSH
CALL

WORD Handle
DosMonClose

Where

Handle

;Handle from DosMonOpen

is the device handle returned from a previous DosMonOpen call.

Returns

IF AX = O then NO error

ELSE AX = error code

Remarks
A single process may register one or more monitors with a character
device using the same device handle returned from a previous
DosMonOpen call. When DosMonClose is issued for a specific,
opened device handle, all monitors for the current process registered
with this handle terminate.

When DosMonClose is issued, the monitor loses access to the device
data stream. Before issuing DosMonClose, monitor threads issuing
DosMonRead and DosMonWrite calls should be terminated.
DosMonRead calls issued after DosMonClose and DosMonWrite calls
issued after DosMonClose return the errors
ERROR_MON_BUFFER_EMPTY and
ERROR_NOT _ENOUGH_MEMORY, respectively.

2-118

DosMonOpen -
Open Connection to Device Monitor

Purpose
DosMonOpen gains access to a character device data stream.

Calling Sequence
EXTRN DosMonOpen:FAR

PUSH@ ASCIIZ Devname
PUSH@ WORD Handle
CALL DosMonOpen

Where

Dev name
is the device name string.

Handle

;Device name (returned)
;Handle value (returned)

is where the handle for the monitor is returned. This value must
be passed to DosMonReg to communicate with the device, and is
passed to DosMonClose to close the connection to the monitor.

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks
A process must issue DosMonOpen to get a handle to the specified
device. A single process may register one or more monitors with the
same or different data stream for one or more character devices.

Issue DosMonOpen before registering monitors. A process must get
the handle to each device whose data stream it wishes to monitor.
This handle is used by the process to communicate with the device
driver in subsequent DosMonReg and DosMonClose calls.

Issue DosMonOpen once for each device. DosMonOpen must be
issued before monitors are registered through DosMonReg, but does

2-119

DosMonOpen -
Open Connection to Device Monitor

not have to be reissued before each subsequent DosMonReg call to
register a monitor with the same device.

When DosMonClose is issued, all monitors in the process registered
with the same device (that is, using the same handle) are closed.

2-120

DosMonRead -
Read Input from Monitor Structure

Purpose
DosMonRead waits for and moves a data record from the input buffer
of a registered character device monitor and places it in a private
data area where the monitor can freely access it.

Calling Sequence
EXTRN DosMonRead:FAR

PUSH@
PUSH
PUSH@
PUSH@
CALL

OTHER Buffer!
WORD WaitFlag
OTHER DataBuf fer
WORD Bytecnt
DosMonRead

Where

Buffer/

;Monitor input buffer
;Block/Run indicator
;Buffer into which records are read
;Input/output parm-#bytes

is where the monitor input buffer is located.

WaitFlag
equals O if the monitor thread that issues DosMonRead wishes to
block until a data record is available in its input buffer. WaitFlag
equals 1 if the monitor thread that issues DosMonRead does not
wish to block when its input buffer is empty.

DataBuffer
is the private data area where the data record taken from the
monitor's input buffer is returned. The length of DataBuffer must
be the entry value of Bytecnt.

Bytecnt
is the length of DataBuffer, on entry to DosMonRead. On the
return from DosMonRead, Bytecnt specifies the number of bytes of
data moved.

Returns

IF AX = O then NO error

ELSE AX = error code

2-121

DosMonRead -
Read Input from Monitor Structure

Remarks
Device monitors are part of a data flow path through a device driver.
They must respond rapidly to insure they do not delay 110. This is
especially important in the case of keyboard monitors.

A monitor process should be written so the threads that read and
write the monitor data run at a high priority. Threads that read and
write the monitor data should not perform operations, such as 1/0 or
semaphore waits, which may cause considerable delay. A monitor
process can have threads running at normal priorities to address
these things.

Note: Each call to DosMonRead receives a single complete record.
Multiple or partial records are not supported.

It is necessary to guarantee all data is cleaned out of the data stream
at certain times. This is accomplished by flushing the data stream. A
marked record or flush record is placed in the data stream by the
device driver and passes through all monitors in the chain to allow
them to perform a device-specific, prescribed activity. Placement of
new data records in the data stream is suspended until the flush
record reaches the device driver's buffer. Flush records must not be
consumed by the monitor. That is, a monitor that receives a flush
record on a DosMonRead call, must return it to the data stream by
calling DosMonWrite.

Note: Refer to information for a specific character device driver in
IBM Operating System/2 Technical Reference, Volume 1 regarding
the type of flush support required for its monitors.

A data record consists of a flag word and the data itself. A flag word
contains information meaningful to the monitors and devices whose
data streams they are monitoring. The flag WORD is always the first
word in the data record. The length of a data record that passes
through a monitor chain must be less than or equal to the length of
the device driver's monitor chain buffer minus 2 bytes.

Note: Refer to information for a specific device driver in the IBM
Operating System/2 Technical Reference, Volume 1 for descriptions
of flags and data in the records passing through its monitor chains.

2-122

DosMonRead -
Read Input from Monitor Structure

On return from DosMonRead, Bytecnt is set to the number of bytes in
the recently moved data record. Since this length may not equal the
length of the private data area, the value of Bytecnt should be
refreshed before the monitor reissues the DosMonRead call.

A monitor can only issue DosMonRead from an input buffer previ
ously registered to an opened device by the same process. That is, a
monitor registered by one process, or application, may not
DosMonRead data from an input buffer of a monitor registered by
another process.

If DosMonReg has not completed registration of a monitor's input and
output buffers, DosMonRead returns ERROR_MON_INVALID_PARMS.
A monitor does not have access to the device's data stream until
DosMonReg completes successfully.

DosMonRead issued by a monitor thread after DosMonClose is
issued by another thread in the same process returns the error code,
ERROR_MON_BUFFER_EMPTY. When DosMonClose is issued, the
monitor loses access to the device's data stream. The monitor
should stop issuing DosMonRead calls before making the
DosMonClose call.

Threads responsible for moving keystroke data through a monitor
chain must pay special attention to the thread priority. Keystroke
monitor threads must execute within the time critical priority class.
More specifically these threads must execute at a priority level
greater than or equal to the lowest level in the time critical priority
class. The preferred level is level 0. This applies to any threads that
read (DosMonRead), process or write (DosMonWrite) keystroke
monitor data.

2-123

DosMonReg -
Register Set of Buffers as Monitor

Purpose
DosMonReg establishes an input and output buffer structure to
monitor an 110 stream for a character device.

Calling Sequence
EXTRN DosMonReg:FAR

PUSH
PUSH@
PUSH@
PUSH
PUSH
CALL

WORD Handle
OTHER Buffer!
OTHER Buf ferO
WORD Posflag
WORD Index
Dos Mon Reg

Where

Handle

;Handle from DosMonOpen
; Input buffer
;Output buffer
;Position flag
;Index

is the device handle returned from a previous DosMonOpen call.

Bu"erl
is the monitor's input buffer. The monitor dispatcher moves data
records into this buffer from the previous monitor, if any, in the
chain or from the chain's first buffer. The monitor takes data from
this buffer for filtering by calling DosMonRead.

Bu"erO
is the monitor's output buffer. The monitor places filtered data
into this buffer by calling DosMonWrite. The monitor dispatcher
moves data records from this buffer to the next monitor, if any, in
the chain or into the device driver's monitor chain buffer, if the
monitor is the last in the chain.

Posflag
is the position preference for locating the monitor in the monitor
chain.

2-124

O = no position preference
1 =monitor placed at beginning of chain
2 = monitor placed at end of chain.

DosMonReg -
Register Set of Buffers as Monitor

Based on this specified position preference and on the position
preference of those monitors from the same or different processes
that have previously registered with the same chain, the monitor
will be positioned within the chain as follows:

The first monitor in a chain that registers as 1 will be placed at the
head of the chain. The next monitor that registers as 1 will follow
the last monitor registered as 1, and so forth. Similarly, the first
monitor that registers as 2 will be placed at the end of the chain.
The next monitor that registers as 2 will be placed before the last
monitor that registered as 2, and so forth. The first monitor that
registers as 0 will be placed before the last monitor if any, that
registered as 2. The next monitor that registers as O will be
placed before the last monitor that registered as 0 and so forth.

Index
is a device specific value, denoting the data stream for the device
to be monitored. Currently, the keyboard and mouse devices
define this in terms of the session number (from one to maximum
session number). "-1 ",for keystroke and mouse monitors, indi
cates the session of the calling thread. Refer to OS/2 Technical
Reference, Volume 1 for further information on how data streams
are defined for each device.

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks
DosMonOpen must first be issued to establish a connection between
the device and monitor. The monitor requires this handle to register
the pair of buffers with the device.

The monitor's input and output buffers must be in the same segment.
The first word of each buffer must contain the buffer length, length
word inclusive, when DosMonReg is issued. The length of each
buffer must be greater than or equal to the length of the device driv
er's monitor chain buffer plus 20 bytes.

2-125

DosMonReg -
Register Set of Buffers as Monitor

Note: Refer to information for a specific character device driver in
the IBM Operating System/2 Technical Reference, Volume 1 for spec
ification of the size of the device driver monitor chain buffer.

DosMonReg formats the monitor's input and output buffers as
needed. The format and semantics of this buffer are not visible to the
monitor application and are subject to change.

Until there is successful return from the DosMonReg call no character
will enter the monitor's input buffer. Therefore, the monitor will not
have access to the device's data stream. It is the application's
responsibility to synchronize completion of PosMonReg and subse
quent data stream monitoring with device input into the data stream.

Suppose an application required that all key strokes are monitored
including 'type-ahead' key strokes. First the application issues
DosMonOpen and DosMonReg to register ~ keystroke monitor. From
the time the application is invoked through the time the keystroke
monitor is registered and gains access to the data stream, the
monitor sees no type-ahead key strokes. Si nee no monitor is regis
tered at this time, type-ahead key strokes pass directly through to the
device driver's API buffer. So that these type-ahead key strokes are
not lost to the monitor, the monitor empties the keyboard's API buffer
by making repeated KbdCharln calls before issuing its first
DosMonRead call. Refer to the OS/2 Programmer's Guide for more
information on this technique.

Threads responsible for moving keystroke data through a monitor
chain must pay special attention to the thread priority. Keystroke
monitor threads must execute within the time critical priority class.
More specifically these threads must execute at a priority level
greater than or equal to the lowest level in the time critical priority
class. The preferred level is level 0. The thread that makes the call
to DosMonReg must also be executing in the time critical priority
class.

2-126

DosMonWrite -
Write Output to Monitor Structure

Purpose
DosMonWrite moves a filtered data record from the monitor's private
data area into the monitor's output buffer.

Calling Sequence
EXTRN DosMonWrite:FAR

PUSH@ OTHER Buf ferO
PUSH@ OTHER DataBuf fer
PUSH WORD Bytecnt
CALL DosMonWrite

Where

BufferO

;Monitor output buffer
;Buffer from which records are taken
;Number of bytes

is the monitor output buffer.

Data Buffer
is the monitor's private data area that contains a filtered data
record of length Bytecnt. DosMonWrite moves this filtered data
record into the monitor's output buffer.

Bytecnt
is the number of bytes in the data record.

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks
Device monitors are part of the data flow path through a device
driver. They must respond rapidly so they do not delay 110. This is
especially important in the case of keyboard monitors.

A monitor process should be written so the threads that read and
write the monitor data run at a high priority and so they never
perform operations, such as 1/0 or semaphore waits, that might delay

2-127

DosMonWrite -
Write Output to Monitor Structure

them. The monitor process can have other threads running at normal
priorities to handle such things.

Each call to DosMonWrite places a single complete filtered data
record into the data stream. The data sent by this call is considered
to be a whole record.

It is necessary to ensure all data is cleaned out of the data stream at
certain times. This technique is known as flushing. A specially
marked record or flush record, is placed into the data stream by the
device driver and passes through all monitors in the chain to allow
them to perform a device-specific, prescribed activity. Placement of
new data records into the data stream is suspended until the flush
record reaches the device driver's buffer. Flush records.must not be
consumed by the monitor. Flush records must be returned to the data
stream by issuing Dos Mon Write.

Note: Refer to information for a specific device driver in the IBM
Operating System/2 Technical Reference, Volume 1 regarding the
type of flush support required for its monitors and restrictions on data
record consumption.

A data record is defined as a word that contains flags meaningful to
monitors and devices whose data streams they are monitoring. The
flag word is always the first word in the data record. A monitor can
modify the data record received on the last DosMonRead call before
it issues DosMonWrite to return it to the device's data stream.
However, the monitor should not alter the order within a data record.

Note: Refer to information for a specific device driver in the IBM
Operating System/2 Technical Reference, Volume 1 for descriptions
of flags and data in the records passing through its monitor chains. A
monitor cannot write a data record into its output buffer that has a
length greater than the length of the device driver's monitor chain
buffer minus 2 bytes.

A monitor can only issue DosMonWrite to an output buffer already
registered to an opened device. DosMonWrite returns the
ERROR_MON_INVALID_PARMS return code if the DosMonReg call
that registered the monitor's input and output buffers is not complete.

2-128

DosMonWrite -
Write Output to Monitor Structure

A monitor does not have access to the device's data stream until
DosMonReg completes successfully.

DosMonWrite issued by a monitor thread after DosMonClose is
issued by another thread in the same process returns the error,
ERROR_NOT _ENOUGH_MEMORY. The monitor loses access to the
device's data stream when DosMonClose is issued. The monitor
should stop issuing DosMonWrite calls before making the
DosMonClose call.

Threads responsible for moving keystroke data through a monitor
chain must pay special attention to the thread priority. Key
stroke monitor threads must execute within the time critical priority
class. More specifically these threads must execute at a priority level
greater than or equal to the lowest level in the time critical priority
class. The preferred level is level 0. This applies to any threads
that read (DosMonRead), process, or write (DosMonWrite) keystroke
monitor data.

2-129

J,tll:r: :"Mov•
:_.:ave" a Fue: .

Purpose
DosMove moves a specified file.

Calling Sequence
EXTRN DosMove:FAR

PUSH@ ASCIIZ OldPathName
PUSH@ ASCIIZ NewPathName
PUSH DWORD 0
CALL DosMove

Where

OldPathName

;Old path name
;New path name
;Reserved (must be 0)

is the old path name of the file to be moved.

NewPathName
is the new path name of the file.

Returns

IF AX= 0 then NO error

ELSE AX = error code

Family API Considerations
Some options operate differently in the DOS mode than they do in the
OS/2 mode. Therefore, the following restriction applies to DosMove
when coding in the DOS mode:

Files passed to OldPathName and NewPathName are truncated by
the system in the DOS mode only. The operator must truncate all
files passed to OldPathName and NewPathName in the OS/2 mode or
an error code is returned.

2-130

Remarks

DosMove -
Move a File

If a drive is used in the NewPathName string, it must be the same as
the drive specified or implied in the OldPathName string. The direc
tory paths need not be the same, allowing a file to be moved to
another directory and renamed in the process. Global filename char
acters are not allowed in the filename.

2-131

DosMuxSemWait ~
Wait for One of N Semaphores to Clear

Purpose
DosMuxSemWait blocks a current thread until one of the specified
semaphores clear.

Calling Sequence
EXTRN DosMuxSemWait:FAR

PUSH@ WORD IndexNbr
PUSH@ OTHER ListAddr
PUSH DWORD Timeout
CALL DosMuxSemWait

Where

lndexNbr

;Index number of event (returned)
;Semaphore list
;Timeout

is where the index number of the semaphore that satisfies the
wait request is returned.

ListAddr
is a list of event descriptors that define the semaphores to be
waited on. The list is composed of a one word count of the
number of semaphore descriptors in the list, followed by the
semaphore descriptors. An application can wait on up to 16
semaphores at once.

Semaphore list format:

ow

N * I DW
\ DD

Timeout

semcount ; Number of semaphores
; specified in list

0 ; Reserved, must be 0
? Semaphore handle

is the count, in milliseconds, until the requesting task is to resume
execution if none of the specified semaphores are cleared. The
meaning of the specified values are:

If value= -1
DosMuxSemWait waits indefinitely for a semaphore clear.

If value= O
there is an immediate return if no semaphores are clear.

2-132

If value> 0

DosMuxSemWait -
Wait for One of N Semaphores to Clear

value is the number of milliseconds to wait for a semaphore to
clear.

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks
DosMuxSemWait checks a semaphore list. If any of the semaphores
clear, DosMuxSemWait returns. If all are set, DosMuxSemWait
blocks (until Timeout) until one of the semaphores clear.
DosMuxSemWait returns when one of the semaphores on the list
clears. This is known as an "edge-triggered" procedure. It is pos
sible for the semaphore to reset before the thread returns to the
caller from the DosMuxSemWait call.

Waiting threads using one of the functions DosSemRequest,
DosSemSetWait, or DosSemWait, (known as "level-triggered" func
tions) may or may not resume. This decision depends on the sched
uler's dispatch order and the activity of other threads in the system.

2-133

oosNawSize ,~'.. :·· ·
Change :Filit Size

Purpose
DosNewSize changes the size of a file.

Calling Sequence
EXTRN DosNewSize:FAR

PUSH WORD FileHandle
PUSH DWORD FileSize
CALL DosNewSize

Where

FileHandle

; File handle
;File 1 s new size

is the handle of the file whose size is being changed.

FileSize
is the file's new size in bytes.

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks
DosNewSize can not change the size of Read/Only files.
DosSetFileMode (Set File Mode) must be used to change a Read/Only
file attribute to 0, and then change the file's size. Refer to
"DosSetFileMode - Set File Mode" on page 2-230.

The value of new bytes in the extended file is undefined. The file
system attempts to allocate the new size in a contiguous space on the
media.

2-134

DosOpen -
Open File

Purpose
DosOpen creates or opens a specified file.

Calling Sequence
EXTRN DosOpen:FAR

PUSH@
PUSH@
PUSH@
PUSH
PUSH
PUSH
PUSH
PUSH
CALL

ASCIIZ
WORD
WORD
DWORD
WORD
WORD
WORD
DWORD
Dos Open

Where

FileName

FileName
FileHandle
ActionTaken
Fil eSi ze
FileAttribute
OpenFlag
OpenMode
a

;File path name
; File handle
;Action taken
;File primary allocation
;File Attribute
;Open function type
;Open mode of the file
;Reserved (must be 0)

is the path name of the file to be opened.

FileHandle
is where the system returns the file handle.

Action Taken
is where the system returns a description of the action taken as a
result of DosOpen.

0001H =file exists
0002H =file created
0003H =file replaced.

FileSize
is the file's new size in bytes.

FileAttribute
File attribute bits are defined as follows:

0001 H = read only file
0002H = hidden file
0004H = system file
0010H =subdirectory

2-135

DosOpen
Open File

0020H =file archive
0040H = Reserved
0080H = Reserved
0100H = Reserved
0200H = Reserved
0400H = Reserved
0800H = Reserved
1000H = Reserved
2000H = Reserved
4000H = Reserved
8000H = Reserved

These bits may be set individually or in combination. For
example, an attribute of 0021H indicates a read-only file which
should be archived.

OpenF/ag
specifies the action to take if the file exists.

OpenFlag specification:

Low Order Byte

---- xxxx
---- eeea
---- eee1
---- earn

xxxx ---
eaee ---
aae 1 ----

action taken if file exists
fail
open file
replace file

action taken if file doesn't exist
fail
create file

High Order Byte

•eeeeeeea•s reserved and set to a

Open Mode
is an open mode that consists of the following bit fields:

• DASO Open flag
• Inheritance flag
• Write-through flag
• Fail-errors flag

2-136

DosOpen -
Open File

• Sharing mode field
• Access field
• Reserved bit fields

Open Mode Bits - the bit field mapping is shown as follows:

Open Mode 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 e
bits D W F R R R R R I S S S R A A A

D-DASD Open
The file is opened as follows:

If D = 0 FileName represents a file to be opened in the normal
way.

If D = 1 FileName is "Drive:" and represents a mounted disk or
diskette volume to be opened for direct access.

W - File Write-through
The file is opened as follows:

If W = O Writes to the file may be run through the DOS buffer
cache.

If W = 1 Writes to the file may go through the DOS buffer cache
but the sectors are written (actual file 110 completed)
before a synchronous write call returns. This state of the
file defines it as a synchronous file.

I - Inheritance Flag

If I = O File handle is inherited by a spawned process resulting
from a DosExecPgm call.

If I = 1 File handle is private to the current process.

This bit is not inherited by child processes.

F - Fail-Errors
Media 110 errors are handled as follows:

If F = 0 Reported through the system critical error handler.

If F = 1 Reported directly to the caller via return code.

This bit is not inherited by child processes. Media 1/0
errors generated through an IOCtl category eight function

2-137

DosOpen
Open File

always get reported directly to the caller via return code.
The Fail-Errors function applies only to non-IOCtl
handle-based type file 110 calls.

R Reserved and must be O field.

S - Sharing Mode
The file sharing mode field defines what operations other proc
esses may perform on the file.

If S = 001 Deny Read/Write access

If S = 01 O Deny Write access

If S = 011 Deny Read access

If S = 100 Deny neither Read or Write access (Deny None)

Any other value is invalid.

A - Access Mode
The file access is assigned as follows:

If A= 000
If A= 001
If A= 010

Read/Only access
Write/Only access
Read/Write access

Any other combinations are invalid. When opening a file, inform OS/2
what operations other processes can perform on this file (sharing
mode). If it is permissible for other processes to continue to read this
file while the process is operating, specify Deny Write.

If a read/write file is opened with read/write access, an open request
from another process will fail unless both processes use sharing
mode Deny None. However, if the file is read-only and the file is
opened with read-only access, an open request from another process
will fail unless both processes used sharing modes of Deny None or
Deny Write.

2-138

DosOpen -
Open File

Returns

IF AX= 0 then NO error

ELSE AX = error code

Family API Considerations
Some options operate differently in the DOS mode than they do in the
OS/2 mode. Therefore, the following restrictions apply to DosOpen
when coding in the DOS mode:

• Inheritance Flag is not supported.
• WriteThroughFlag must be set to 0.
• FailErrorsFlag must be set to 0.
• Share Mode has meaning only if SHARE is loaded, ignored if

SHARE is not loaded.
• Access field has meaning only if SHARE is loaded, ignored if

SHARE is not loaded.
• Access mode has meaning only if SHARE is loaded, ignored if

SHARE is not loaded.
• FileName files passed to DosOpen must be truncated by the oper

ator or an error code is returned. In the OS/2 mode, the system
does the truncation.

When a read/only file is created it is always opened in compatibility
mode, and is given read/write access.

Remarks
The read/write pointer is set at the first byte of a file. Issue
DosChgFilePtr to change the read/write pointer.

The following example illustrates how DosScanEnv and
DosSearchPath could be used to provide DosOpen with path
searching:

Let DPATH be an environment variable in the environment segment
of the process.

11 DPATH=c:\sysdir;c:\init 11 /* in the
environment */

2-139

DosOpen
Open File

The following two code fragments are equivalent:

DosScanEnv(11 DPATH 11
, &PathRef);

DosSearchPath(e, /* Path Source Bit = e */

PathRef, "myprog. i ni 11
, &Resul tBuffer,

ResultBufLen);

DosOpen(ResultBuffer, ...);

DosSearchPath(2, /* Path Source Bit = 1 */

11 DPATH 11
, "myprog. ini 11

, &ResultBuffer,
ResultBuflen);

DosOpen(ResultBuffer, ...);

Issue DosQFilelnfo to obtain the file's date and time. Issue
DosSetFilelnfo to set date and time, its attribute can be obtained
through DosQFileMode.

The FileSize parameter affects the size of the file only when it is
created or replaced. If an existing file is opened, FileSize is ignored.

The DASO Open bit parameter is the Direct 1/0 flag. It provides an
access mechanism to a disk or diskette volume independent of the
file system. This mode should only be used by systems programs
and not by application programs. This mode of opening the currently
mounted volume on the drive is used to return a handle to the caller
that represents the logical volume as a single file. To block other
processes from accessing the logical volume, the caller must issue
DosDevlOCtl Category 8, sub-function 0 which requires the file handle
for the logical volume returned by DosOpen.

DosOpen and DosSetFHandState can set the file handle state bits. An
application can issue DosQFHandState to query the file handle state
bits and the Open Mode field. Use the returned file handle for subse
quent input and output to the file. The value of new bytes in the
extended file is undefined.

When a critical error occurs that the application cannot handle, it
must reset critical error handling to be done by the system. Issue

2-140

DosOpen -
Open File

DosSetFHandState and reissue the 1/0 to accomplish this. The
expected critical error reoccurs and is passed to the system critical
error handler. The instant in time at which the effect of the DosOpen
is visible at the application level it is unpredictable when asynchro
nous 1/0 is pending. This is the recommended action to take and is
not done automatically.

Notes:

• DosOpen opens any normal or hidden file whose name matches
the name specified.

• A multitasking system must be able to use semaphores to create
and manage files. DosOpen may be used as a test and set
semaphore when used to create a new file.

• When a file is closed, any sharing restrictions placed on it by the
open are canceled.

• The file system attempts to allocate the new size in a contiguous
space on the media.

• FileAttribute can not be set to Volume Label. Volume labels can
not be opened.

• To set the file read/only attribute issue DosSetFileMode or the
OS/2 ATTRIB command.

• If the file is inherited by a spawned process, all sharing and
access restrictions are also inherited.

• If an open file handle is duplicated by DosDupHandle, all sharing
and access restrictions are also duplicated.

Sharing Modes

• Deny Read/Write Mode (Exclusive)

If a file is successfully opened in Deny Read/Write mode, access
to the file is exclusive. A file currently open in this mode cannot
be opened again in any sharing mode by any process until the file
is closed.

• Deny Write Mode

A file successfully opened in Deny Write sharing mode, prevents
any other write access opens to the file (A= 001 or 010) until the
file is closed. An attempt to open a file in Deny Write mode is
unsuccessful if the file is currently open with a write access.

2-141

DosOpen
Open File

• Deny Read Mode

A file successfully opened in Deny Read sharing mode, prevents
any other read sharing access opens to the file (A= 000 or 010)
until the file is closed. An attempt to open a file in Deny Read
sharing mode is unsuccessful if the file is currently open with a
read access.

• Deny None Mode

A file successfully opened in Deny None mode, places no
restrictions on the read/write accessibility of the file.

2-142

DosOpenQueue -
Open Queue

Purpose
DosOpenQueue opens a queue for the current process.

Calling Sequence
EXTRN DosOpenQueue:FAR

PUSH@ WORD OwnerPID
PUSH@ WORD QueueHandle
PUSH@ ASCIIZ QueueName
CALL DosOpenQueue

Where

OwnerPID

;Queue owners' PIO
;Handle of queue
;Queue name string

is where the process ID of the queue owner is returned.

QueueHandle
is where the write handle of the queue is returned.

QueueName
is the name of the queue provided by a previous DosCreateQueue
call.

Returns

IF AX = 0 then NO error

ELSE AX = error code

Remarks
Before elements can be sent to a queue, the queue must be opened.
DosCreateQueue opens the queue for that process.

When specifying the name for the queue, the ASCllZ name string pro-
1 vided must include the prefix \QUEUES\ The process that issues the

DosCreateQueue does not have to do a DosOpenQueue.

2-143

. o6s.bpenSern .·...;.·
Open .. E~Jsting• System Semaphore

Purpose
DosOpenSem opens a system semaphore.

Calling Sequence
EXTRN DosOpenSem:FAR

PUSH@ DWORD SemHandle
PUSH@ ASCIIZ SemName
CALL DosOpenSem

Where

SemHandle

;Semaphore handle (returned)
;Semaphore name string

is where the handle of the system semaphore created by
DosCreateSem is returned. This handle must be supplied by any
requests directed to the same semaphore.

SemName
is the name of the system semaphore which was created using
DosCreateSem.

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks
DosCreateSem must create the semaphore before DosOpenSem can
open it. DosOpenSem only returns the handle of the semaphore, it
does not test or change the value of the semaphore.

If a process with open semaphores issues a DosExecPgm, the new
process inherits any open semaphore handles. All inherited
semaphores are initially not owned by the child process, even if the
parent owned them at the ti me of the Exec. (Only one process can
own a semaphore at a time.)

2-144

DosOpenSem -
Open Existing System Semaphore

Note: Under OS/2, system semaphores reside in a memory buffer
rather than on a disk file. This means that when the last process
which has a semaphore open (via DosCreateSem or DosOpenSem)
exits, the semaphore disappears and must be recreated by its next
user.

2-145

DosPeekQueue
Peek· Queue

Purpose
DosPeekQueue retrieves an element from a queue without removing
it from the queue.

Calling Sequence
EXTRN DosPeekQueue:FAR

PUSH WORD QueueHandle ;Handle of queue to read from
PUSH@ DWORD Request ;Request identification data

; (returned)
PUSH@ WORD Data Length ;Length of element received

; (returned)
PUSH@ DWORD DataAddress ;Address of element received

; (returned)
PUSH@ WORD ElementCode ;Indicator of element received

; (returned)
PUSH WORD NoWait ;Indicate no wait if queue empty
PUSH@ WORD ElemPriority ;Priority of element (returned)
PUSH DWORD SemaphoreHandle ;Semaphore Handle
CALL DosPeekQueue

Where

QueueHandle
is the handle of the queue from which to obtain an element.

Request
is filled in with the following information:

The first word is the PIO of the process which added the element
to the queue.

The second word is used for event coding by the application. The
data in this word is the same as that furnished by the Request
parameter on the DosWriteQueue request for the corresponding
queue element. The value of this data is understood by the client
thread and by the server thread. There is no special meaning to
this data and the operating system does not alter the data.

Data Length
is where the length of the received data is returned.

2-146

DosPeekQueue -
Peek Queue

DataAddress
is where the element being retrieved from the queue is returned.

ElementCode
indicates to start at the beginning of the queue or at a particular
element. This field is set to:

Oby the application
to indicate start at the beginning of the queue

Non-0 by the DosPeekQueue function
to indicate the element returned, or by the owner to indicate
"get next element."

No Wait
specifies the action to be performed when there are no entries on
the queue.

If value= 0
the requesting thread waits.

If value= 1
the requesting thread does not wait.

Elem Priority
is the priority specified when the element is added to the queue.
This is a numeric value in the range of zero to 15, with 15 being
the highest priority.

SemaphoreHandle
is the handle of a semaphore which is to be cleared when the
queue has data placed into it and NoWait = 1 is specified. The
semaphore may be either a RAM or system semaphore.

If this handle is for a RAM semaphore, that semaphore must be in
a segment shared between the queue owner's process and any
process that issues a DosWriteQueue request to an associated
queue.

If multiple threads are processing elements from the queue using
a NoWait value = 1, the same semaphore must be provided on all
DosPeekQueue or DosReadQueue requests.

2-147

DosPeekQueue
Peek Queue

Returns

IF AX = 0 then NO error

ELSE AX = error code

Remarks
DosPeekQueue retrieves elements from a specified queue without
removing that element from the queue. If the queue is empty, and
wait is specified, the thread is placed in a wait state waiting for an
element to be added to the queue. If the NoWait option is selected,
the request does not place the thread in a wait state, but returns with
a code indicating there are no entries on the queue.

ElementCode is an indicator of the element to peek or read next. Fol
lowing a peek request, ElementCode contains an identifier of the
element which has been peeked The next DosPeekQueue which pro
vides this identifier as the ElementCode parameter, returns the next
element following the element indicated by ElementCode. A subse
quent DosReadQueue request that provides this identifier reads the
indicated element.

When the application program sets this field to 0, the next
DosPeekQueue or DosReadQueue request accesses the first element
in the queue.

Only the queue owner (the process which created the queue via
DosCreateQueue) is allowed to issue this call. Any thread within that
process may also issue DosPeekQueue calls to any queue owned by
that process.

The semaphore provided by SemaphoreHandle would typically be
used with a DosMuxSemWait request to wait on a queue or any of
several other events. This operand is ignored if NoWait = 0 is speci
fied.

2-148

Purpose

DosPFSActivate -
Activate Font

DosPFSActivate specifies the code page and font to make active for
the specified printer and Process ID.

Calling Sequence
EXTRN DosPFSActivate:FAR

PUSH
PUSH@
PUSH@
PUSH
PUSH
PUSH
PUSH
CALL

WORD SplHandle
DWORD BytesWritten
ASCIIZ PrinterName
WORD CodePage
WORD FontID
WORD ProcessID
DWORD Reserved
DosPFSActivate

Where

Sp/Handle

;Temporary Spool File handle
;Number of bytes written (returned)
;Printer name string
;Code Page to make active
;Font ID to make active
; Process ID
;Reserved, set to e

is the file handle of the temporary spool file for which code page
and font switching is being activated.

Bytes Written
is where the number of bytes written to the temporary spool file
are returned.

PrinterName
is the name of the printer for which code page and font switching
is being activated.

CodePage
specifies the code page to make active for the specified printer
and process id.

FontlD
specifies the font within the specified code page to make active for
the specified printer and process id.

For download fonts, the FontlD is that specified in the printer font
file.

2-149

DosPFSActivate
Activate Font

For cartridge fonts, the FontlD is the number specified on the label
of the cartridge and in the DEVINFO statement for the printer.

A value of O (OOOOh) for both the CodePage and Fontld indicates
that the hardware default code page and font should be made
active.

A value of O for the font ID but not the code page indicates that any
font ID is acceptable for the code pages.

Process/D
specifies the process ID of the requester.

Reserved
is reserved and set equal to zero.

Returns

IF AX = O then NO error

ELSE AX = error code

For a description of the return values for DosPFSActivate, see the
Remarks section below:

Remarks

DosPFSActivate is intended for use only by applications that replace
the spooler as a print monitor and that do code page switching.
Other applications should use printer IOCtls to manipulate printer
code page switching.

OosPFSActivate is located in SPOOLCP.OLL (not in DOSCALLS.LIB)
and requires an import statement in the module definition file. See
the IBM Operating System/2 Programmer's Guide, Module Definition
File Statements section for information regarding the import state
ment.

2-150

DosPFSActivate -
Activate Font

Return values are:

Value
2
4
9
10
13

15
19
21
23
24
25

Meaning
Code page not available
Font ID not available
Code page switcher internal error
Invalid printer name as input
Received code page request when code page switcher not
initialized
PIO table full. Cannot activate another entry
1/0 error reading font file control sequence section
110 error reading font file font definition block
1/0 error while writing to temporary spool file
Disk full error while writing to temporary spool file
Bad spool file handle

2-151

~ •• •• • '"'. ••••• ·,... •• < • /

·. DosPFSCleseUse.r·······•~
Close:a;orit'.User. Interface

Purpose
DosPFSCloseUser indicates to the Font Switcher that the specified
process has closed its spool file. The Font Switcher may then free
any resources being used to track code page and font switching for a
process.

Calling Sequence
EXTRN DosPFSCloseUser:FAR

PUSH@ ASCIIZ PrinterName
PUSH WORD ProcessID
PUSH DWORD Reserved
CALL DosPFSCloseUser

Where

PrinterName

;Printer name string
;Process ID
;Reserved, set to e

is the name of the printer for which code page and font switching
is being closed.

Process/D
specifies the process ID of the requester.

Reserved
is reserved and set equal to 0.

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks

DosPFSActivate is intended for use only by applications that replace
the spooler as a print monitor and that do code page switching.
Other applications should use printer IOCtls to manipulate printer
code page switching.

2-152

DosPFSCloseUser -
Close Font User Interface

DosPFSActivate is located in SPOOLCP.DLL (not in DOSCALLS.LIB)
and requires an import statement in the module definition file. Refer
to the IBM Operating System/2 Programmer's Guide, Module Defi
nition File Statements section for information regarding the import
statement.

Return values are:

Value
8
9
10
13

Meaning
Attempted to close process ID not active
Code page switcher internal error
Invalid printer name as input
Received code page request when code page switcher not
initialized

2-153

DosPFSlnit ~
Initialize Code Page and Font

Purpose
DosPFSlnit allows the Font Switcher to initialize code page and font
switching for a specified printer.

Calling Sequence
EXTRN DosPFSinit:FAR

PUSH@ OTHER CPHdw
PUSH@ ASCIIZ FontFileName

PUSH@ ASCIIZ PrinterType
PUSH@ ASCIIZ PrinterName
PUSH WORD Instances
PUSH DWORD Reserved
CALL DosPFSinit

Where

CPHdw

;Hdw Font definition list
;File pathname of the
;font file to be used
;Printer type string
;Printer name string
;Number of spool instances
;Reserved

points to a list in the following format which specifies the Hard
ware code page and fonts the printer is equipped with:

Word 0
Number of definitions which follow

DWord 1 / n
Code page number (1st Word of DWord) and Font ID (2nd
Word of DWord) for each hardware font in order corre
sponding to the hardware code page and font selection
numbers (i.e. the first code page and font ID value corre
sponds to the default hardware font 0, second value corre
sponds to hardware font 1, third to hardware font 2, etc.. If
the default hardware font is not known, O should be specified
for the default code page and font).

FontFileName
is the pathname of the font file of the specified printer for which
code page and font switching is being initialized.

2-154

Printer Type
is the printer type ID.

PrinterName

DosPFSlnit -
Initialize Code Page and Font

is the name of the printer for which code page and font switching
is being initialized.

Instances
is the maximum number of different instances of use for which
code page and font switching should be tracked. This value is
advisory for the Font Switcher to be able to allocate enough
resources for the specified number of instances to be tracked.

Reserved
is reserved and set equal to 0.

Returns

IF AX= O then NO error

ELSE AX = error code

Remarks

DosPFSlnit is intended for use only by applications that replace the
spooler as a print monitor and that do code page switching. Other
applications should use printer IOCtls to manipulate printer code
page switching.

DosPFSlnit is located in SPOOLCP.DLL (not DOSCALLS.LIB) and
requires an import statement in the module definition file. Refer to
the IBM Operating System/2 Programmer's Guide, Module Definition
File Statements section for information regarding the import state
ment.

2-155

DosPFSlnit -
Initialize Code Page and Font

Return values are:

Value
1
3

6
9
10
11
12
14
17
19
20
21
22

2-156

Meaning
Code page switcher already initialized.
User entered too many ROMs in DEVINFO. Initialization
continued with the rest.
Wrong or missing font file ID.
Code page switcher internal error.
Invalid printer name as input.
Printer type input does not match that in font file.
Could not get storage for control blocks.
Could not open font file during initialization.
Switcher reports too many PIO entries.
110 error reading font file control sequence section.
1/0 error reading font file header.
110 error reading font file font definition block.
Some fonts bad due to error in font file. Initialization con
tinued

DosPFSQueryAct -
Query Active Font

Purpose
DosPFSQueryAct queries the active code page and font for the speci
fied printer and Process ID.

Calling Sequence
EXTRN DosPFSQueryAct:FAR

PUSH@ ASCIIZ PrinterName ;Printer name string
PUSH@ WORD CodePage ;Code Page return
PUSH@ WORD Fontld ;Font ID return
PUSH WORD ProcesslD ;ProcessID
PUSH DWORD Reserved ;Reserved, set to 0
CALL DosPFSQueryAct

Where

PrinterName
is the name of the printer for which the active code page and font
is being queried.

CodePage
is where the currently active code page for the specified printer
and process ID are returned.

Fontld
is where the currently active Font ID number for the specified
printer and process ID are returned.

Process ID
specifies the process ID of the requester.

Reserved
is reserved and set equal to 0. is reserved for future use.

Returns

IF AX = O then NO error

ELSE AX = error code

2-157

DosPFSQueryAct -
Query Active Font

Remarks

DosPFSQueryAct is intended for use only by applications that replace
the spooler as a print monitor and that do code page switching.
Other applications should use printer IOCtls to manipulate printer
code page switching.

DosPFSQueryAct is located in SPOOLCP.DLL (not in DOSCALLS.LIB)
and requires an import statement in the module definition file. Refer
to the IBM Operating System/2 Programmer's Guide, Module Defi
nition File Statements section for information regarding the import
statement.

Return values are:

Value
9
10
13

16

2-158

Meaning
Code page switcher internal error.
Invalid printer name as input.
Received code page request when code page switcher not
initialized.
Received request for process ID not in the PIO table.

DosPFSVerifyfont -
Verify Font

Purpose
DosPFSVerifyFont indicates whether the specified code page and font
within that code page are available in the font file for the specified
printer.

Calling Sequence
EXTRN DosPFSVerifyFont:FAR

PUSH@
PUSH
PUSH
PUSH
CALL

ASCIIZ PrinterName
WORD CodePage
WORD Fontld
DWORD Reserved
DosPFSVerifyFont

Where

PrinterName

;Printer name string
;Code Page to validate
;Font Id to validate
;Reserved, set to e

is the name of the printer for which the code page and font
switching setup is being queried.

CodePage
is the code page to validate. Values may be Oto 65535.

Fontld
is the Font ID to validate. Values may be 0 to 65535. A value of 0
indicates that any font within the specified code page is accept
able.

Reserved
is reserved and set equal to 0.

Returns

IF AX= 0 then NO error

1 ELSE AX = error code

2-159

DosPFSVerifyFont
Verify Font

Remarks

DosPFSVerifyFont is intended for use only by applications that
replace the spooler as a print monitor and that do code page
switching. Other applications should use printer IOCtls to manipulate
printer code page switching.

DosPFSVerifyFont is located in SPOOLCP.DLL (not in
DOSCALLS.LIB;) and requires an import statement in the module
definition file. Refer to the IBM Operating System/2 Programmer's
Guide, Module Definition File Statements section for information
about the import statement.

Return values are:

Value
2
4
10
13

2-160

Meaning
Code page not available
Font ID not available
Invalid printer name as input.
Received code page request when code page switcher not
initialized.

DosPhysicalDisk -
Partitionable Disk Support

Purpose
DosPhysicalDisk obtains information on partitionable disks.

Calling Sequence
EXT RN DosPhysicalDisk:FAR

PUSH WORD Function
PUSH@ OTHER DataPtr
PUSH WORD Data Len
PUSH@ OTHER PannPtr

PUSH WORD PannLen

CALL DosPhysicalDisk

Where

Function

;Type of infonnation
;Pointer to return buffer
;Return buffer length
;Pointer to user-supplied
; infonnati on
;Length of user-supplied
; infonnation

identifies the type of information on the partitionable disk(s} to
obtain.

The functions currently supported are:

1 = obtain total number of partitionable disks
2 =obtain a handle to use with Category 9 IOCtls
3 = release a handle for a partitionable disk

DataPtr
indicates the location of a buffer in which the returned information
is placed.

Data Len
specifies the length of the data buffer.

The output data for each function is described below. Note that all
lengths are in bytes.

2-161

DosPhysicalDisk -
Partitionable Disk Support

Function
1

2

3

ParmPtr

Data Len
2

2

0

Returned Information
Total number of partitionable disks in the
system, 1-based
Handle for the specified partitionable disk for
the Category 9 IOCtls
None - Pointer must be 0.

indicates the location of a buffer used for input parameters.

Parm Len
specifies the length of the parameter buffer.

The input parameters required for each function are described
below. Note that all lengths are in bytes.

Function
1
2

3

Returns

Parm Len
0
string
length
2

Input Parameters
None I must be set to O
ASCllZ string that
specifies the partitionable disk
Handle obtained from Function 2

IF AX= 0 then NO error

ELSE AX = error code

Remarks

The ASCllZ string used to specify the partitionable disk must be of the
following format:

2-162

where

number

number : <null byte>

DosPhysicalDisk -
Partitionable Disk Support

specifies the partitionable
disk (1-based) number in
ASCII

must be present

>null byte> the byte of e for the
ASCIIZ string

The handle returned for the specified partitionable disk can only be
used with the DosDevlOCtl call for the Category 9 Generic IOCtl. Use
of the handle for a physical partitionable disk is not permitted for
handle-based file system function calls, such as DosRead or
DosClose.

2-163

· ·oosPortAccess

Purpose
DosPortAccess requests or releases access to ports for 110 privilege.

Calling Sequence
EXTRN DosPortAccess:FAR

PUSH WORD Reserved
PUSH WORD TypeOf Access
PUSH WORD FirstPort
PUSH WORD Last Port
CALL DosPortAccess

Where

Reserved
must be set to 0.

TypeOf Access

;e
;Request or release
;First port number
;Last port number

indicates a request for or release of access to a port.

0 =request access
1 =release access

FirstPort
specifies either the starting (low-end) number in a contiguous
range or a single port.

LastPort
specifies either the ending (high-end) number in a contiguous
range or a single port. If only one port is being used FirstPort
needs to be set to this port number and LastPort needs to be set to
this port.

Returns

IF AX = 0 then NO error

ELSE AX = error code

2-164

DosPortAccess -
Request Port Access

Remarks
Note that CLl/STI privilege is also granted automatically, there is no
need to make an additional call to DosCLIAccess.

Applications that perform 1/0 to port(s) in IOPL segments must
request port access from the operating system.

An application with no IOPL segments that accesses a device through
a device driver or by an interface package such as VIO, will not need
to gain port access: the device driver or interface package will be
responsible for obtaining the necessary 1/0 access.

2-165

:i>o•1>11-&c&·· ..
· ·1~terface ·;te>r Pre>grarn Qe~ugging

Purpose
DosPtrace provides an interface into the OS/2 kernel to facilitate
program debugging.

Calling Sequence
EXTRN DosPtrace:FAR

PUSH@ OTHER PtraceB ;Ptrace buffer (returned)
CALL DosPtrace

Where

PtraceB
is the Ptrace command/data buffer. This buffer is used to commu
nicate between the debug program and the DosPtrace routines.

Returns
AX=O

Remarks
DosPtrace allows a parent process to control the execution of another
process. Its intended use is directed toward the implementation of
breakpoint debugging using a debugger. The program under test
and, the program being debugged, must be executing in OS/2 mode.

To debug a process with multiple threads, DosPtrace allows the
debugger to selectively suspend and resume the threads of a
program being debugged. It also reads the registers of its individual
threads.

A debug program must be able to read and write the instructions,
data, and registers of the program being debugged to insert break
point instructions. When a process runs in OS/2 mode, one process
cannot directly manipulate the address space of another process.
OS/2 controls this address space through the use of the trace flag
facility in DosExecPgm and the Ptrace buffer in DosPtrace.

2-166

DosPtrace -
Interface for Program Debugging

The steps to program debugging in a OS/2 mode follow:

1. The debug program issues DosExecPgm for the program to be
debugged, and specifies the trace option.

2. The debug program calls DosPtrace with the TRC_C_Stop
command to initialize the Ptrace Buffer.

3. The debug program sets up a Ptrace buffer with commands for
inserting the breakpoints, and issues repeated DosPtrace
requests as necessary.

4. The debug program sets up a Ptrace buffer with a command to
begin execution and issues DosPtrace. This may be a
TRC_C_SStep, or TRC_C_Go.

5. When the kernel DosPtrace program receives control from the
program being debugged, it returns to the debug program with
the Ptrace buffer set to the current register contents and with indi
cators of the reason for return.

6. The kernel DosPtrace program receives control at a breakpoint
interrupt, at processor exceptions, or when the program ends.

To debug a process with multiple threads, set a field in the Ptrace
buffer (Ptrace_B.TID) to the thread ID of the thread of interest. This
causes the read/write register commands to receive only the register
set of the specified thread.

Note: For a process with multiple threads, the address space is the
same for all the threads in the process. When commands are issued
to read/write memory locations or set breakpoints it affects all the
threads in the process even though the command was issued with a
specific thread ID.

The debugger may suspend and resume specific threads through use
of the TRC_C_Freeze and TRC_C_Resume commands. Having only
selected threads be affected by the breakpoints is useful for manipu
lating them while other threads are suspended.

When a process debugger terminates, the program being debugged
1 also terminates. To accomplish this, an internal link between the

debugger and the program being debugged is maintained. This link
is established as a result of the first successful TRC_C_Stop
command. Once established, this link can not be reset.

2-167

DosPtrace -
Interface for Program Debugging

The program being debugged does not need to be a direct child. As a
result, a small window of time between the DosExecPgm call and the
first DosPtrace call, where if the debugger terminates, the program
being debugged cannot be cleaned up. The system terminates the
program being debugged in a few minutes.

Contents of the Ptrace Buffer:

Ptrace B Structure

PIO ow 0 ; Process ID of the process being
debugged

TIO ow 0 ; Thread ID of the process being
debugged

Cmd ow 0 ; Request to DosPtrace, or DosPtrace
result code

Value ow ? ; Data to DosPtrace, or DosPtrace error
code

OffV ow ? ; Offset value

SegV ow ? ; Segment value

MTE ow ? ; Library Module handle

rAX ow ? ; Registers AX thru SS

rBX ow ?

rCX ow ?

rDX ow ?

rSI ow ?

rDI ow ?

rBP ow ?

2-168

Ptrace B

rOS ow ?

rES ow ?

rlP ow ?

res ow ?

rF ow ?

rSP ow ?

rSS ow ?

Ptrace_B
ENDS

DosPtrace Commands:

DosPtrace -
Interface for Program Debugging

Structure

PTrace_B.Cmd must contain one of the following commands upon
entrance to OosPTrace:

TRC_C_Null EQU
'

0 Invalid

TRC_C_ReadMem_I EQU
1

TRC_C_ReadMem_O EQU
2

TRC_C_ReadMem EQU TRC_C_ReadMem_I

TRC_C_ReadReg EQU
3

TRC_C_WriteMem_I EQU
4

2-169

DosPtrace -
Interface for Program Debugging

TRC_C_WriteMem_D EQU
5

TRC_C_WriteMem EQU TRC_C_WriteMem_I

TRC_C_WriteReg EQU
6

TRC_C_Go EQU
7

TRC_C_Term EQU
8

TRC_C_SStep EQU
9

TRC_C_Stop EQU ; lni-
10 tialize

TRC_C_Freeze EQU
11

TRC_C_Resume EQU
12

TRC_C_NumToSel EQU
13

TRC_C_GetFPRegs EQU
14

TRC_C_SetFPRegs EQU
15

TRC_C_GetlibName EQU
16

Commands and Required Input:
A command is issued by placing the command number in
Ptrace_B.Cmd, and other required information into a Ptrace
buffer, and calling DosPtracewith that buffer.

2-170

DosPtrace -
Interface for Program Debugging

All of the commands require that Ptrace_B.PID be the PIO of the
process to debug.
TRC_C_Null : Not a valid command

Memory Operations:
For the following commands, SegV:OffV is the affected location,
and Ptrace_B.Value contains the value to write to or that was read
from the debugger's memory.
TRC_C_ReadMem_I : Read instruction
TRC_C_ReadMem_D : Read data
TRC_C_ReadMem : Read any memory
TRC_C_WriteMem_I : Write instruction
TRC_C_WriteMem_D : Write data
TRC_C_WriteMem : Write to any memory

Register I Thread Operations:
For the following commands, Ptrace_B.TID must contain the
thread ID of the thread in question.
TRC_C_ReadReg : Examine thread's registers
TRC_C_WriteReg : Write thread's registers
TRC_C_Freeze : Suspend a thread
TRC_C_Resume : Resume a suspended thread

Command Operations:
For the following commands, the Ptrace_B.PID must be valid. The
Ptrace_B registers are ignored for these commands. For
TRC_C_Go and TRC_C_SStep, any thread may gain control first.
The TRC_C_Term command terminates the program being
debugged.
TRC_C_Go
TRC_C_Term
TRC_C_SStep
TRC_C_Stop

Library Support:

: Run debuggee
: Terminate debuggee
: Run one instruction
: Initialize PTrace buffer

For TRC_C_NumToSel, Ptrace_B.Value should be set to the
segment number on entrance, and a valid selector on exit. Also,
Ptrace_B.MTE should be set to the module's handle. The MTE
identifies the different library files in the program being debugged.

For TRC_C_GetlibName, SegV:OffV should point to a buffer where
the name of the library will be returned. PTrace_B.Value should
hold the library's module handle (MTE).
TRC_C_NumToSel : Convert Segment number to selector
TRC_C_GetlibName : Return name of module

2-171

DosPtrace -
Interface for Program Debugging

Floating Point Support:
For the following two commands, SegV:OffV must contain a
pointer to a 94 byte buffer to be used to read/write the floating
point registers from/to.

The layout of this area is described in the NPX287 manual under
the heading FSAVE/FRSTOR memory layout.
TRC_C_GetFPRegs : Read floating point regs.
TRC_C_SetFPRegs : Write floating point regs.

DosPtrace Return Codes:
When DosPtrace returns to the debug program, the result is
placed in Ptrace_B.Cmd, and reflects the reason for the return.

The values returned are:

TRC_C_SUC_ret EQUO ; Success

TRC_C_ERR_ret EQU-1 ; Error

TRC_C_SIG_ret EQU-2 ; Signal

TRC_C_TBT_ret EQU-3 ; Single Step

TRC_CB_PT _ret EQU-4 ; Breakpoint

TRC_C_NMl_ret EQU-5 ; Parity Error

TRC_C_KIL_ret EQU-6 ; Process dying

TRC_C_GPF _ret EQU-7 ; GP fault

TRC_C_LIB_ret EQU-8 ; Library load

2-172

DosPtrace -
Interface for Program Debugging

I TRC_C_FPE_ret I EQU -9 I ; FP error

If Ptrace_B.Cmd is returned as TRC_C_ERR_ret, Ptrace_B.Value
is set to one of the following:
TRACE_BAD_COMMAND
TRACE_CHILD_NOT _FOUND
TRACE_CHILD_UNTRACEABLE

EQU 1
EQU2
EQU 5

If Ptrace_B.Cmd is returned as TRC_C_SIG_ret, the process is
about to receive a signal.

If Ptrace_B.Cmd is returned as TRC_C_KIL_ret, the process is
about terminate.

If Ptrace_B.Cmd returns as TRC_C_GPF _ret, the process creates a
General Protection fault. The fault type is returned in
PTrace_B.Value, and SegV:OffV contains the reference that gener
ated the fault.

If Ptrace_B.Cmd is returned as TRC_C_LIB_ret, a library module
has been loaded. The new module table entry (MTE) is returned
in Ptrace_B.Value. This can be used with the library support com
mands to identify the library module. The program module's MTE
is returned in PTrace_B.MTE. In this case, the initial TRC_C_Stop
command should be re-issued until TRC_C_SUC_ret is returned.

If Ptrace_B.Cmd is returned as TRC_C_FPE_ret, the process has
generated a floating point error.

2-173

bosPurg .. Queue -
Purge Queue

Purpose
DosPurgeQueue purges a queue of all elements.

Calling Sequence
EXTRN DosPurgeQueue:FAR

PUSH WORD QueueHandle ;Handle of queue to purge
CALL DosPurgeQueue

Where

QueueHandle
is the handle of the queue to purge.

Returns

IF AX= O then NO error

ELSE AX = error code

Remarks
Only the queue owner (the process which created the queue via
DosCreateQueue) is allowed to issue this call. Any thread within that
process can issue DosPurgeQueue calls to any queue owned by that
process.

2-174

DosPutMessage -
Output Message Text to Indicated Handle

Purpose
DosPutMessage outputs the message in a buffer passed by .a caller to
the specified handle. The function formats the buffer to prevent
words from wrapping if displayed to a screen.

Calling Sequence
EXTRN DosPutMessage:FAR

PUSH WORD FileHandle ;Handle of output file/device
PUSH WORD MessageLength ;Length of message buffer
PUSH@ OTHER MessageBuffer ;Message buffer
CALL DosPutMessage

Where

FileHandle
is the handle of the output file or device.

MessageLength
is the length of the message to be output.

MessageBuffer
is the buffer that contains the message to be output.

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks
Screen width is assumed to be 80 characters. If a word is about to
span column 80, the word will start on a new line at column 1.
DosPutMessage assumes the starting cursor position is column one
when handling a word wrap.

If the last character to be positioned on a line is a double-byte char
acter that would be bisected, the rule above insures that the char
acter is not bisected.

2-175

D()so¢1.rbJf ; --
9uerv·ot.trr•11.~:dPi'•~•ory

Purpose
DosQCurDir gets the full path name of the current directory for the
requesting process for the specified drive.

Calling Sequence
EXTRN DosQCurDir:FAR

PUSH WORD
PUSH@ OTHER
PUSH@ WORD

DriveNumber
DirPath
DirPathLen

CALL DosQCurDir

Where

DriveNumber

;Drive number
;Directory path buffer (returned)
;Directory path buffer
; length (returned)

is the drive number, for example:

0 =default
1=A

DirPath
is where the system returns the full directory path name.

DirPathLen
is the length of the DirPath buffer. When DosQCurDir is called,
this field must contain the length of the directory path buffer. If an
error is returned by DosQCurDir because the buffer is too small,
the DirPathlen field is updated with the required length.

Returns

IF AX = 0 then NO error

ELSE AX = error code

Remarks
The drive letter is not part of the returned string. The string does not
begin with a backslash and is terminated by a byte containing OOH.

2-176

Purpose

DosQCurDisk -
Query Current Disk

DosQCurDisk determines the current default drive for the requesting
process.

Calling Sequence
EXTRN DosQCurDisk:FAR

PUSH@ WORD DriveNumber ;Default drive number (returned)
PUSH@ DWORD LogicalDriveMap ;Drive/map area (returned)
CALL DosQCurDisk

Where

DriveNumber
is where the system returns the number of the default drive, for
example:, 1 =A, 2=8 ...

LogicalDriveMap
is a bit map (stored in the low-order portion of the 32-bit, double
word area) in which the system returns the mapping of the logical
drives. Logical Drives A to Z have a one-to-one mapping with the
bit positions O to 25 of the map.

If bit value= O
the logical drive does not exist.

If bit value= 1
the logical drive exists.

Returns

AX= 0

Remarks
None

2-177

oosar-1Harielslale ~·
·Q~efy f JI~;· 1-fandle ·State

Purpose
DosQFHandState queries the state of the specified file.

Calling Sequence
EXTRN DosQFHandState:FAR

PUSH WORD FileHandle ;File handle
PUSH@ WORD FileHandleState ;File handle state (returned)
CALL DosQFHandState

Where

FileHandle
is the handle of the file to be queried.

FileHandleState
is the file handle state and consists of the following bit fields:

• Inheritance flag
• Write/through flag
• Fail/errors flag

· • Sharing mode field
• Access field
• Reserved bit fields.

The bit field mapping is:

Open Mode bits 5 4 3 2 1 e 9 8 7 6 5 4 3 2 1 e
D W F R R R R R I S S S R A A A

D DASD Open

The file is opened as follows:

If D = 0
FileHandle represents a file opened in the normal way.

If D = 1

2-178

FileHandle represents a mounted disk or diskette volume
opened for direct access.

DosQFHandState -
Query File Handle State

I Inheritance Flag

If I= 0
File handle is inherited by a spawned process resulting from a
DosExecPgm call.

If I= 1
File handle is private to the current process.

W File Write/through

The file is opened as follows:

lfW=O
Writes to the file may be run through the DOS buffer cache.

lfW = 1
Writes to the file may go through the DOS buffer cache but
sectors are written (actual file 1/0 completed) before a syn
chronous write call returns. This state of the file defines it as a
synchronous file.

This bit is not inherited by child processes.

F Fail/Errors

Media 1/0 errors are handled as follows:

If F = 0
Reported through the system critical error handler.

If F = 1
Reported directly to the caller via return code.

This bit is not inherited by child processes. Media 1/0 errors gen
erated through an IOCtl Category 8 function always get reported
directly to the caller via return code. The Fail-Errors function
applies only to non-IOCtl handle-based type file 110 calls.

R These bits are reserved and should be set to the values returned
by DosQFHandState in these positions.

S Sharing Mode

The file sharing mode field defines what operations other proc
esses may perform on the file.

If S = 001
Deny Read/Write access

2-179

DosQFHandState -
Query File Handle State

If S = 010
Deny Write access

If S = 011
Deny Read access

If S = 100
Deny Neither Read or Write access (Deny None)

Any other value is invalid.

A Access Mode

The file access is assigned as follows:

If A= 000
Read/only access

If A= 001
Write/only access

If A= 010
Read/Write access

Any other value is invalid.

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks
When a critical error occurs that the application cannot handle, it may
reset critical error handling to be done by the system. This is done by
issuing DosQFHandState, turning off the fail/errors bit, issuing
DosSetFHandState and subsequently reissuing the 1/0. The expected
critical error reoccurs and passes to the system critical error handler.
The instant in time at which the effect of this function is visible at the
application level is unpredictable when asynchronous 1/0 is pending.

The DASO Open bit parameter is the "Direct 110 flag." It provides an
access mechanism to a disk or diskette volume independent of the
file system. This mode should only be used by systems programs and
not by application programs.

2-180

DosQFilelnfo -
Query File Information

Purpose
DosQFilelnfo returns information for a specific file.

Calling Sequence
EXTRN DosQFilelnfo:FAR

PUSH
PUSH
PUSH@
PUSH
CALL

WORD FileHandle
WORD FilelnfoLevel
OTHER FilelnfoBuf
WORD FilelnfoBufSize
DosQFilelnfo

Where

FileHandle
is the file handle.

FilelnfoLevel

;File handle
;File data required
;File data buffer
;File data buffer size

is the level of file information required. Level 1 file information is
returned in the following standard format and, where applicable,
is based on the most recent DosClose or DosSetFilelnfo:

2 bytes -
2 bytes -
2 bytes -
2 bytes -
2 bytes -
2 bytes -
2 bytes -
2 bytes -
2 bytes -
2 bytes -
2 bytes -

FilelnfoBuf

File date of creation
File time of creation
File date of last access
File time of last access
File date of last write
File time of last write
File end of data (low word)
File end of data (high word)
File allocation (low word)
File allocation (high word)
File attribute

is the storage area where the system returns the requested level
of file information.

FilelnfoBufSize
is the length of FilelnfoBuf.

2-181

DosQFilelnfo -
Query File Information

'Returns

IF AX = 0 then NO error

ELSE AX = error code

Remarks
Level 1 is the only defined level of information.

The date and time formats are the same as those for the directory
entry. For more information refer to "DosFindFirst - Find First
Matching File" on page 2-59.

File date/time of creation and file date/time of last access are not
supported in this release and are returned as zeros.

2-182

DosQFileMode -
Query File Mode

Purpose
DosQFileMode queries the mode (attribute) of the specified file.

Calling Sequence
EXTRN DosQFileMode:FAR

PUSH@ ASCIIZ FilePathName ;File path name
PUSH@ WORD CurrentAttribute ;Data area (returned)
PUSH DWORD 0 ;Reserved (must be 0)
CALL DosQFileMode

Where

FilePathName
is the file path name.

CurrentAttribute
is where the file's current attribute is returned.

Returns

IF AX = 0 then NO error

ELSE AX = error code

Remarks

The volume label type attribute is not returned by DosQFileMode,
DosQFslnfo may be used for this purpose.

2-183

DosQFileMode -
Query File Mode

File attribute bits are defined as follows:

0001H = read only file
0002H = hidden file
0004H =system file
001 OH = subdirectory
0020H =file archive
0040H = reserved
0080H = reserved
0100H = reserved
0200H = reserved
0400H = reserved
OSOOH = reserved
1 OOOH = reserved
2000H =reserved
4000H = reserved
8000H =reserved

These bits may be set individually or in combination. For example,
an attribute of 0021H indicates a read-only file which should be
archived.

2-184

DosQFslnfo -
Query File System Information

Purpose
DosQFslnfo queries information from a file system device.

Calling Sequence
EXTRN DosQFsinfo:FAR

PUSH
PUSH
PUSH@
PUSH
CALL

WORD DriveNumber
WORD FSinfoLevel
OTHER FSinfoBuf
WORD FSinfoBufSize
DosQFsinfo

Where

DrlveNumber

;Drive number
;File system data required
;File system info buffer
;File system info buffer size

is the logical drive number (0 = default, 1 = A, etc.).

FSlnfoLevel
is the level of file information required.

Level 1 information is returned in the following standard format:

4 bytes - File System ID
4 bytes - Number of sectors per allocation unit
4 bytes - Number of allocation units
4 bytes - Available allocation units
2 bytes - Bytes per sector

Level 2 information is returned in the following standard format:

4 bytes - Reserved
1 byte - Length of Volume label (null not included)
n bytes - Volume label ASCllZ string

FSlnfoBuf
is the storage area where the system returns the requested level
of file information.

FSlnfoBufSlze
is the length of FSlnfoBuf.

2-185

DosQFslnfo -
Query File System Information

Returns

IF AX = 0 then NO error

ELSE AX = error code

Remarks
Trailing blanks supplied at volume label definition time are not con
sidered to be part of the label and are therefore not returned as label
data.

2-186

DosQHandType -
Query Handle Type

Purpose
DosQHandType determines whether a handle references a file or a
device.

Calling Sequence
EXTRN DosQHandType:FAR

PUSH WORD FileHandle
PUSH@ WORD HandType
PUSH@ WORD FlagWord
CALL DosQHandType

Where

FlleHandle
is the file handle

HandType

; File handle
;Handle type (returned)
;Device driver attribute (returned)

is where the system returns the value indicating the handle type.
HandType is composed of two bytes:

HandleClass
describes the handle class. It may take on the following
values in the low byte of HandleType:

• O = handle is for a disk file
• 1 = handle is for a character device
• 2 = handle is for a pipe.

Values greater than 2 are reserved.
HandleBlts

provides further information about the handle in the high byte
of HandleType. This byte is broken into eight bits, whose
meaning depends upon the value of HandleClass:

2-187

DosQHandType -
Query Handle Type

Disk file
Char device
Pipe

HandleBits HandleClass
s 4 3 2 1 a g a 7 ----- a
N u u u u u u u 0
N u u u u u u u 1
N u u u u u u u 2

The network bit = N. If set, it means that the handle refers to a
remote file, device, or pipe. Otherwise, the handle refers to a
local file, device, or pipe.

The undefined and reserved bit = u. A program should not
depend upon the values of these bits as they are subject to
change.

Flag Word
is where the system returns the device driver's attribute word if
HandleType indicates a local character device.

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks
DosQHandType allows some programs which may be interactive or
file-oriented to determine the source of their input. For example,
COMMAND.COM suppresses writing prompts if the input is from a
disk file.

2-188

DosQueryQueue -
Query Size of Queue

Purpose
DosQueryQueue finds the size of a queue.

Calling Sequence
EXTRN DosQueryQueue:FAR

PUSH WORD QueueHandle
PUSH@ WORD NumberElements
CALL DosQueryQueue

Where

QueueHandle

;Handle of queue to find size
;Size of the queue (returned)

is the handle of the queue to find size.

NumberElements
is where the number of entries currently in the queue waiting to
be processed are returned.

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks
Any process which has a queue open may issue this request.

If the owning process closes the queue prior to this request being
issued, the "Queue does not exist (invalid queue handle)" return code
is returned.

2-189

·''?~IQVe~ily
qll•ty: Verify.· $eiting

Purpose
DosQVerify returns the value of the verify flag.

C~lling Sequence
EXTRN DosQVerify:FAR

PUSH@ WORD VerifySetting ;Verify setting (returned)
CALL DosQVerify

Where

VerifySetting
is where the current verify mode for the process is returned.

If value = OOH
verify mode is not active.

If value= 01H
verify mode is active.

Returns

AX=O

Remarks
None

2-190

Purpose

DosRead -
Read from File

DosRead reads the specified number of bytes from a file or device to
a buffer location.

Calling Sequence
EXTRN DosRead:FAR

PUSH WORD FileHandle ;File Handle
PUSH@ OTHER BufferArea ;User buffer
PUSH WORD BufferLength ;Buffer length
PUSH@ WORD BytesRead ;Bytes read (returned)
CALL DosRead

Where

FileHandle
is the file handle obtained from DosOpen.

Buffer Area
is the input buffer.

BufferLength
is the number of bytes to be read.

BytesRead
is where the the number of bytes read is returned.

Returns

IF AX= O then NO error

ELSE AX = error code

2-191

DosRead -
Read from File

Family API Considerations
Some options operate differently in the DOS mode than they do in the
OS/2 mode. Therefore, the following restrictions apply to DosRead
when coding in the DOS mode:

Use only single-byte DosReads to COMx in PC/DOS. The COM
device driver supplied with PC/DOS does not support multiple-byte
1/0.

Remarks
The requested number of bytes may not be read. If the value in
BytesRead = 0, then the program has tried to read from the end of
file.

The file pointer is moved to the desired position by reading, writing,
and performing function DosChgFilePtr (Move File Read/Write
Pointer).

2-192

DosReadAsync
Asynchronous Read from File

Purpose
DosReadAsync transfers the specified number of bytes from a file to a
buffer, asynchronously with the requesting process execution.

Calling Sequence
EXTRN DosReadAsync:FAR

PUSH WORD FileHandle
PUSH@ DWORD RamSemaphore
PUSH@ WORD ReturnCode
PUSH@ OTHER BufferArea
PUSH WORD Buff erLength
PUSH@ WORD BytesRead
CALL DosReadAsync

Where

FlleHandle

;File handle
;Ram semaphore
;I/0 error RC (returned)
;User buffer
;Buffer length
;Bytes read (returned)

is the file handle obtained from DosOpen.

RamSemaphore
is used by the system to signal the caller that the read operation
is complete.

ReturnCode
is where the return code is returned.

Buffer Area
is the input buffer.

Buffer Length
is the number of bytes to be read.

BytesRead
is where the number of bytes read is returned.

Returns
AX=O

Note: When RamSemaphore is cleared and the read operation is
complete, ReturnCode can be checked.

2-193

DosReadAsync -
Asynchronous Read from File

Remarks

The requested number of bytes may not be read. When
RamSemaphore is cleared, if the value in BytesRead is 0, the
program attempted to read from the end of the file.

The value of the file read/write pointer is updated before the 110
request is queued to the device driver.

RamSemaphore must be set by the application before the
DosReadAsync call is made. The application issues the following
sequence:

• DosSemSet
• DosReadAsync
• DosSemWait.

The program must not look at the values returned in ReturnCode,
BufferArea, or BytesRead until after RamSemaphore is cleared.

2-194

Purpose

DosReadQueue -
Read from Queue

DosReadQueue reads an element from a queue and removes it.

Calling Sequence
EXTRN DosReadQueue:FAR

PUSH
PUSH@
PUSH@
PUSH@
PUSH
PUSH
PUSH@
PUSH
CALL

WORD QueueHandle
DWORD Request
WORD Data Length
DWORD DataAddress
WORD ElementCode
WORD NoWait
WORD ElemPriority
DWORD SemaphoreHandle
DosReadQueue

Where

QueueHandle

;Handle of queue to read from
;Request identification data (returned)
;Length of element received (returned)
;Element received
;Indicate want a particular element
;Indicate to not wait if queue is empty
;Priority of element
;Semaphore handle

is the handle of the queue to read from.

Request
is an area in which the following information is returned:

The first word is the PIO of the process which added the element
to the queue.

The second word is used for event encoding by the application.
The data in this word is the same as that furnished by the Request
parameter on the DosWriteQueue request for the corresponding
queue element. The value of this data is understood by the client
thread and by the server thread. There is no special meaning to
this data and the operating system does not alter the data.

Data Length
is where the length of the data being received is returned.

DataAddress
is where the address of the received element is returned.

2-195

DosReadQueue -
Read from Queue

ElementCode
indicates to override the normal priority, FIFO, or LIFO read
ordering. This operand is used to identify a specific element which
is to be read. This field should be set to O (by the application) to
read the first element in the queue, or set to non-zero (to the value
returned by a previous DosPeekQueue operation) to indicate read
a peeked element.

No Wait
specifies the action to be performed when there are no entries in
the queue.

If value= 0
the requesting thread waits.

If value= 1
the requesting thread does not wait.

Elem Priority
is where the priority specified when the element was added to the
queue is received. This is a numeric value in the range of 0 to 15
with 15 being the highest priority.

SemaphoreHandle
is the handle of the semaphore cleared when the queue has data
placed into it and NoWait=1 is specified. The semaphore may be
either a RAM or system semaphore.

If this handle is for a RAM semaphore, that semaphore must be in
a shared segment between the queue owner's process and any
process that issues a DosWriteQueue request to an associated
queue.

If multiple threads are processing elements from the queue using
a NoWait value = 1, the same semaphore must be provided on all
DosPeekQueue or DosReadQueue requests.

Returns

IF AX = 0 then NO error

ELSE AX = error code

2-196

Remarks

DosReadQueue -
Read from Queue

DosReadQueue retrieves and removes an element from a specified
queue.

If the queue is empty, the requesting thread is placed in a wait state
until an element is added to the queue. If the NoWait option is
selected, the thread is not placed in a wait state, but is returned with
a code indicating there are no entries on the queue.

If ElementCode is provided, the element indicated is returned. If
ElementCode equals 0, the first element in the queue is returned.
This allows a thread to read an element from a queue and use
DosPeekQueue to compare other elements in the queue to the one
read.

Only the queue owner (the process which created the queue via
DosCreateQueue) is allowed to issue this call. Any thread within that
process may also issue DosReadQueue calls to any queue owned by
that process.

The semaphore provided by SemaphoreHandle would typically be
used with a DosMuxSemWait request to wait on a queue or other
events. This operand is ignored if NoWait = 0 is specified.

2-197

DosReallocHuge· ~
Change 11uge Me'11ory Size

Purpose
DosReallocHuge changes the size of memory originally allocated by
DosAI locHuge.

Calling Sequence
EXTRN DosReallocHuge:FAR

PUSH WORD NumSeg
PUSH WORD Size
PUSH WORD Selector
CALL DosReallocHuge

Where

NumSeg

;Number of 65536-byte segments requested.
;Number of bytes in last segment
;Selector

is the number of 65536 byte segments requested.

Size
is the number of bytes requested in the last non-65536 byte
segment. A value of O indicates none.

Selector
is the selector returned on a previous DosAllocHuge.

Returns

IF AX = 0 then NO error

ELSE AX = error code

Family API Considerations
Some options operate differently in the DOS mode than they do in the
OS/2 mode. Therefore, the following restriction applies to
DosReallocHuge when coding in the DOS mode:

The requested Size value is rounded up to the next paragraph.

2-198

DosReallocHuge -
Change Huge Memory Size

Since the MaxNumSeg parameter in DosAllocHuge is ignored in the
DOS mode, any subsequent call to DosReallocHuge will also ignore
any previous setting of MaxNumSeg.

Remarks

The maximum new size is the value specified for MaxNumSeg on the
original DosAllocHuge request.

2-199

~ftjfil~e~' - .. •·.
;qha'l'.lg•:$1gme,nt ~'z•

Purpose
DosReallocSeg changes the size of a segment already allocated.

Calling Sequence
EXTRN DosReallocSeg:FAR

PUSH WORD Size ;New size requested in bytes
PUSH WORD Selector ;Selector
CALL DosReallocSeg

Where

Size
is the new segment size requested in bytes. A value of O indicates
65536 bytes.

Selector
is the selector of the segment to be resized.

Returns

IF AX = O then NO error

ELSE AX = error code

Family API Considerations
Some options operate differently in the DOS mode than in the OS/2
mode. Therefore, the following restriction applies to DosReallocSeg
when coding in the DOS mode:

• the requested Size value is rounded up to the next paragraph.

2-200

DosReallocSeg -
Change Segment Size

Remarks
DosReallocSeg is supported for shared and unshared segments.
Shared segments can be increased but not decreased in size.

Note that a call to DosReallocSeg referencing a discardable segment
(a segment which was allocated via DosAllocSeg with AllocFlags bit 2
(01008) set) will, in addition to reallocating the memory, perform the
same action as a call to DoslockSeg. Refer to "DoslockSeg -
Lock Segment in Memory" on page 2-112 for more information about
this option.

Note: Data in segments discarded in low-memory situations is not
retained. The only way to reference the discarded segments again is
to reallocate them.

DosReallocHuge is used to change the size of memory allocated with
DosAllocHuge.

2-201

DosResumeThread
Restart Thread

Purpose
DosResumeThread restarts a thread previously stopped by way of the
DosSuspendThread system call.

Calling Sequence
EXTRN DosResumeThread:FAR

PUSH WORD ThreadID
CALL DosResumeThread

Where

Thread ID

;Thread ID of thread to resume

is the Thread ID of the thread to be resumed.

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks
None

2-202

Purpose

DosRmDir -
Remove Subdirectory

DosRmDir removes a subdirectory from the specified disk.

Calling Sequence
EXTRN DosRmDir:FAR

PUSH@ ASCIIZ DirName
PUSH DWORD e
CALL DosRmDir

Where

DirName

;Directory name
;Reserved (must be 0)

Is the directory path name.

Returns

IF AX = O then NO error

ELSE AX = error code

Remarks
The directory must be empty before it can be removed with the
exception of the"." and" •• " . You cannot remove subdirectories that
contain hidden files. The last directory name in the path is the direc
tory to be removed. The root directory and the current directory
cannot be removed.

2-203

DosscanEnv
Scar1 an.·.t;nviroorneof S~grnenl

Purpose
DosScanEnv scans (searches) an environment segment for an envi
ronment variable.

Calling Sequence
EXTRN DosScanEnv:FAR

PUSH@ ASCIIZ EnvVarName ;Environment variable name
PUSH@ DWORD ResultPointer ;Search result pointer (returned)
CALL DosScanEnv

Where

EnvVarName
is the name of the environment variable to be located. Do not
include a trailing "=",since this is not part of the name.

ResultPointer
is where the address of the value for the specified environment
variable is returned.

Returns

IF AX = 0 then NO error

ELSE AX = error code

Remarks
Assume that the processes' environment contains:

"DPATH=c:\sysdir;c:\libdir"

2-204

/\

+ ••• ResultPointer points here after call
to DosScanEnv below.

DosScanEnv("DPATH", &ResultPointer);

As noted above, ResultPointer will point to the first
character of the value of the environment variable.

Purpose

DosSearchPath -
Search Path for File Name

DosSearchPath provides a general path search mechanism which
allows applications to find files residing along paths. The path string
may come from the process environment, or be supplied directly by
the caller.

Calling Sequence
EXTRN DosSearchPath:FAR

PUSH
PUSH@
PUSH@
PUSH@
PUSH
CALL

WORD Control
ASCIIZ PathRef
ASCIIZ FileName
OTHER ResultBuffer
WORD ResultBufferLen
DosSearchPath

Where

Control

;Function control vector
;Search path reference
;File name
;Search result buffer
;Search result buffer length

is a word bit vector which controls the behavior of DosSearchPath:

• Bit O = implied current bit
• Bit 1 = path source bit
• Bits 2-15 = reserved bits, must be 0.

The implied current bit controls whether the current directory is
implicitly on the front of the search path. If the implied current bit
= 0, DosSearchPath will only search the current directory if it
appears in the search path. If the implied current bit= 1,
DosSearchPath will search the current working directory before it
searches the directories in the search path.

For example, implied current bit= 0 and path= ".\;a;b" is equiv
alent to implied current bit= 1 and path = "a;b".

The path source bit determines how DosSearchPath interprets the
PathRef argument. If the path source bit= 0, then PathRef points
to the actual search path. The search path string may be any
where in the calling processes' address space, therefore, it may
be in the environment, but does not have to be.

2-205

DosSearchPath -
Search Path for File Name

If the path source bit= 1, then PathRef points to the name of an
environment variable in the process environment, and that envi
ronment variable contains the search path.

Path Ref
If the path source bit of control = 0, then PathRef is the search
path, which may be anywhere in the caller's address space.

If the path source bit of control = 1, then PathRef is the name of an
environment variable which contains the search path.

A search path consists of a sequence of paths separated by
";". It is a single ASCllZ string. The directories will be
searched in the order they appear in the path.

Environment variable names are simply strings which
match name strings in the environment. The "=" sign is not
part of the name.

FileName
is the ASCllZ file name to search for. It may contain global char
acters. If FileName does contain global characters, they will
remain in the result path returned in ResultBuffer. This allows
applications like CMD.EXE to feed the output directly to
DosFindFirst. If there are no wild cards in FileName, the result
path retutned in ResultBuffer will be a full qualified name, and
may be passed directly to DosOpen, or any other system call.

ResultBuffer
is where the result pathname of the file is returned, if found.

ResultBufLen
is the length in bytes of the ResultBuffer.

Returns

IF AX == 0 then NO error

ELSE AX = error code

2-206

DosSearchPath -
Search Path for File Name

Remarks
PathRef always points to an ASCllZ string. Let DPATH be an environ
ment variable in the environment segment of the process.
11 DPATH=c: \sysdi r; c: \ i nit 11 /* in the environment * /

The following two code fragments are equivalent:

DosScanEnv (11 DPATH 11
, &PathRef);

DosSearchPath(e, /* Path Source Bit = e */
PathRef, 11myprog.ini 11

, &ResultBuffer, ResultBufLen);

DosSearchPath(2, /* Path Source Bit = 1 */
11 DPATH 11

,
11myprog.ini 11

, &ResultBuffer, ResultBufLen);

Both of them use the search path stored as DPATH in the environ
ment segment. In the first case, the application uses DosScanEnv to
find the variable, in the second case DosSearchPath calls
DosScanEnv for the application.

DosSearchPath does not check for consistency or formatting on the
names, it does a DosFindFirst on a series of names it constructs from
PathRef and FileName.

To determine the size of the returned pathname, the ResultBuffer
must be scanned for the ASCllZ terminator.

2-207

· possele,~tQisf · · ·
Sele,Qt Defeutt. Orive

Purpose
DosSelectDisk selects the drive specified as the default drive for the
calling process.

Calling Sequence
EXTRN DosSelectDisk:FAR

PUSH WORD DriveNumber ;Default drive number
CALL DosSelectDisk

Where

DriveNumber
contains the new default drive number, where 1 = A and 2 = 8.,
and so on.

Returns

IF AX = O then NO error

ELSE AX = error code

Remarks
None

2-208

Purpose

DosSelectSession -
Select Foreground Session

DosSelectSession allows a parent session to switch one of its child
sessions to the foreground.

Calling Sequence
EXTRN DosSelectSession:FAR

PUSH WORD SessID
PUSH DWORD Reserved
CALL DosSelectSession

Where

SesslD

;Session ID
;Reserved (must be zero)

is the ID of the session to be switched to the foreground. The
value specified for SesslD must have been returned on a prior
call to DosStartSession except that a value of O indicates to switch
the caller's session, (that is, the parent session), to the fore
ground.

Reserved
is a DWORD of 0.

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks

DosSelectSession can only be issued by a parent session to select
itself or a child session. DosSelectSession can not be used to select
a grandchild session. DosSelectSession may only be used to select
child sessions which were originally started by the caller with
DosStartSession specifying Related equal 1. That is, sessions started
as independent sessions can not be selected through this call.

2-209

DosSelectSession -
Select Foreground Session

When DosSelectSession is issued, the session specified will not be
brought to the foreground unless the parent session or one of its
descendant sessions is currently executing in the foreground. Other
wise, a unique error code is returned in AX.

DosSelectSession can only be issued by the process that originally
started (using DosStartSession) the SesslD specified.

2-210

Purpose

DosSemClear -
Clear (Release) Semaphore

DosSemClear unconditionally clears a semaphore. If any threads
were blocked on the semaphore, they are restarted.

Calling Sequence
EXTRN DosSemClear:FAR

PUSH DWORD SemHandle
CALL DosSemClear

Where

SemHandle

;Semaphore handle

is the handle for the semaphore. For a system semaphore, this
handle is the result of the DosCreateSem or DosOpenSem request
which granted this process access to the semaphore. For a RAM
semaphore, this handle is the address of the storage allocated for
the semaphore.

Returns

IF AX = 0 then NO error

ELSE AX = error code

Remarks
DosSemClear is typically used to release a semaphore obtained
through DosSemRequest. DosSemClear is also used with the
semaphore signalling functions DosSemSetWait, DosSemWait, and
DosMuxSemWait, to clear a semaphore. A semaphore is checked
only when a process receives its time slice and if a semaphore clears
and resets during the time it is not processing, then the process does
not become blocked.

2-211

DosSemClear -
Clear (Release) Semaphore

DosSemClear cannot be issued against a system semaphore owned
by another process unless the NoExclusive option was selected on
the DosCreateSem request that created the semaphore. However, at
interrupt time any thread may clear an exclusively owned
semaphore.

2-212

DosSemRequest -
Request Semaphore

Purpose
DosSemRequest obtains a semaphore. If the semaphore is already
owned, the requesting thread is placed in a wait state until the
semaphore is released or until a time out occurs.

Calling Sequence
EXTRN
DosSemRequest:FAR

PUSH DWORD SemHandle
PUSH DWORD Timeout
CALL DosSemRequest

Where

SemHandle

;Semaphore handle
;Timeout

is the handle for the semaphore. For a system semaphore, this
handle is the result of the DosCreateSem or DosOpenSem request
which granted this thread access to the semaphore. For a RAM
semaphore, this handle is the address of the storage allocated for
the semaphore.

Timeout
is the time, in milliseconds, until the requesting thread resumes
execution if the requested semaphore did not become available.
The meaning of the values specified are:

If value= -1
there is no time out, if the semaphore is owned. The requestor
waits indefinitely.

If value= 0
there is an immediate return if the semaphore is owned.

If value >0
the value is the number of milliseconds to wait if the
semaphore is owned.

2-213

DosSemRequest -
Request Semaphore

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks
DosSemRequest checks the status of the semaphore. If a semaphore
is unowned, DosSemRequest sets it owned and returns immediately
to the caller. If the semaphore is owned, DosSemRequest can
optionally block the thread until it is unowned, then try again. The
Timeout parameter places an upper bound on the amount of time to
block before returning even though the semaphore is owned.

When a thread owns a semaphore, it is invalid for another thread to
issue a semaphore request that changes the state of that semaphore,
unless the NoExclusive option is specified. However, at interrupt
time, any thread may clear any exclusive, owned, semaphore. For
exclusive system semaphores, recursive requests for system
semaphores are supported by means of a use count of the number of
times the owner has issued a DosSemRequest without a corre
sponding DosSemClear. When a thread owns a semaphore it is
invalid for another thread to issue any semaphore request such as,
(DosSemClear), that will change the state of the semaphore unless
the NoExclusive option was specified in the original DosSemRequest.

The unblockihg of a DosSemRequest does not return unless the indi
cated semaphore remains clear until the affected thread is redis
patched and is able to claim it. This procedure is known as "level
triggered" unblocking.

RAM semaphores are generated by a doubleword in RAM. The
doubleword initialized to 0 indicates the semaphore is unowned.

Note: An application can issue DosSemSet if it requires a
semaphore to be initially set to owned.

System semaphores are generated by a semaphore data structure
allocated by DosCreateSem, and controlled by OS/2. System
semaphores are initialized to unowned. However, if an application

2-214

DosSemRequest -
Request Semaphore

requires the semaphore to be initially set to owned, issue DosSemSet
after DosCreateSem.

If a thread terminates while it owns a system semaphore, the
ERROR_SEM_OWNER_DIED return code is returned to the thread that
gets the next semaphore via DosSemRequest. That thread takes
steps to ensure the integrity of the resource. The thread can release
the resource by issuing a DosSemClear or it can reset the
ERROR_SEM_OWNER_DIED error condition flagged in the
semaphore data structure.

When a thread no longer requires the protected resource, it issues
DosSemClear and sets the semaphore unowned. Any threads that
were blocked waiting for that semaphore are started at this time.

Before owned system semaphores are freed, issue DosExitlist. This
allows a process to clean up the current resource before it terminates
and avoids receiving any error code.

2-215

De>sSemSet -
Set Semaphore Owned

Purpose
DosSemSet unconditionally sets a semaphore.

Calling Sequence
EXTRN DosSemSet:FAR

PUSH DWORD SemHandle
CALL DosSemSet

Where

SemHandle

;Semaphore handle

is the handle for the semaphore. For a system semaphore, this is
the result of the DosCreateSem or DosOpenSem request which
granted this thread access to the semaphore. For a RAM
semaphore, this handle is the address of the storage allocated for
the semaphore.

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks
DosSemSet is not required in a resource control environment using
DosSemRequest and DosSemClear. However, it is typically used in a
signaling environment implemented via DosSemClear, DosSemWait,
and DosMuxSemWait. These function calls can be used in combina
tion with DosSemClear and DosSemSet to awaken a blocked thread
whenever a semaphore is cleared rather than when it is no longer
owned.

Note: DosSemSet cannot be issued against a system semaphore
which is owned by another process unless the NoExclusive option
was selected on the original DosCreateSem request.

2-216

DosSemSetWait -
Set Semaphore and Wait for Next Clear

Purpose
DosSemSetWait blocks the current thread until the next DosSemClear
is issued. However, DosSemSetWait does not establish ownership of
this semaphore.

Calling Sequence
EXTRN DosSemSetWait:FAR

PUSH DWORD SemHandle
PUSH DWORD Timeout
CALL DosSemSetWait

Where

SemHandle

;Semaphore handle
;Timeout

is the handle for the semaphore. For a system semaphore, this
handle is the result of the DosCreateSem or DosOpenSem request
that granted this thread access to the semaphore. For a RAM
semaphore, this handle is the address of the storage allocated for
the semaphore.

Timeout
is the time, in milliseconds, until the requesting process is to
resume execution if the requested semaphore does not become
available. The meaning of the values specified are

If value= -1
there is no timeout, if a DosSemClear is not issued. The
requestor waits indefinitely.

If value= O
there is an immediate return.

If value> 0
value is the number of milliseconds to wait if a DosSemClear
is not issued.

2-217

DosSemSetWait -
Set Semaphore and Wait for Next Clear

Returns

IF AX = 0 then NO error

ELSE AX = error code

Remarks
DosSemSetWait is set before the thread is blocked, if the semaphore
is not initially set. The semaphore resets on return.

The unblocking of DosSemSetWait does not return unless the indi
cated semaphore remains clear until the affected thread is redis
patched and determines the semaphore is clear. This is known as a
"level triggered" procedure.

DosSemSetWait cannot be issued against a system semaphore
owned by another thread unless the NoExclusive option was selected
on the DosCreateSem request that created the semaphore. If a
system semaphore is created with the exclusive option,
DosSemSetWait should not be used to coordinate execution between
threads. The owner must clear this semaphore.

2-218

DosSemWait -
Wait for Semaphore To Clear

Purpose
DosSemWait blocks the current thread until an indicated semaphore
clears, but does not establish ownership of the semaphore.

Calling Sequence
EXTRN DosSemWait:FAR

PUSH DWORD SemHandle
PUSH DWORD Timeout
CALL DosSemWait

Where

SemHandle

;Semaphore handle
;Timeout

is the handle for the semaphore. For a system semaphore, this
handle is the result of the DosCreateSem or DosOpenSem request
that granted this thread access to the semaphore. For a RAM
semaphore, this handle is the address of the storage allocated for
the semaphore.

Timeout
is the time, in milliseconds, until the requesting process is to
resume execution if the requested semaphore does not become
available. The meaning of the values specified are:

If value= -1
there is no time out if the semaphore is set. The requestor
waits indefinitely.

If value= 0
there is an immediate return if the semaphore is set.

If value> 0
the value is the number of milliseconds to wait if the
semaphore is set.

2-219

DosSemWait -
Wait for Semaphore To Clear

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks

The unblocking of DosSemWait does not return unless the indicated
semaphore remains clear until the affected thread has been redis
patched and determines that the indicated semaphore is clear. This
is known as a "level-triggered" procedure.

2-220

Purpose

DosSendSignal -
Send CTL

DosSendSignal sends a CTL-C or CTL-Break signal to the last
process in the command subtree (leaf-most) that has a corresponding
signal handler installed. A command subtree is all of the processes
created as a result of a single command.

Calling Sequence
EXTRN DosSendSignal:FAR

PUSH WORD PIO
PUSH WORD SigNumber
CALL DosSendSignal

Where

PID

;PID of root of subtree
;Signal Number to send

is the process ID of the root process of the subtree. It is not nec
essary that this process still be alive, but it is necessary that this
process be a direct child of the process which issues this call.

SigNumber
is the signal to send. It may be:

• 1 - Ctrl-C (SIGINTR)
• 4 - Ctrl-Break (SIGBREAK)

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks
The signal is sent by descending the process tree to the leaf-most
process. Then starting with that process, look for one that has a
handler installed for the corresponding signal. If a handler is found,
give the signal to that process. Otherwise look at the parent process.
Continue until either the signal is sent or the original process is
looked at. The latter case is indicated by a unique error code.

2-221

[J~tC~~'':
s•rJ~C)da, p~g~

Purpose
DosSetCp allows a process to set its code page and the session's
display code page and keyboard code page.

Calling Sequence
EXTRN DosSetCp:FAR

PUSH WORD CodePage
PUSH WORD Reserved
Call DosSetCp

Where

CodePage

;Code page identifier
;Reserved, set to e

is a code page identifier word that has one of the following values:

Identifier
437
850
860
863
865

Reserved

Description
IBM pc us 437 code page
Multilingual code page
Portuguese code page
Canadian-French code page
Nordic code page

is a reserved word that must be set to 0.

Returns

IF AX = 0 then no error

ELSE AX = error code.

Remarks
DosSetCp allows a program to set its code page. See CONFIG.SYS
and the CODEPAGE command for preparing code pages for the
system. The first code page specified in the CODEPAGE command is
the default system code page. The session code page of a new
session is set to the default system code page. A session's code
page can be changed by the user with the CHCP command at the

2-222

DosSetCp -
Set Code Page

command prompt. The process code page of a new program started
from a session command prompt is set to that session's code page.

DosSetCp sets the process code page of the calling process. The
code page of a process is used in the following ways. First, the
printer code page is set to the process code page through the file
system and printer spooler (the system spooler must be installed)
when the process makes an open printer request. Calling DosSetCp
does not affect the code page of a printer opened prior to the call and
does not affect the code page of a printer opened by another process.
Second, country dependent information will, by default, be retrieved
encoded in the code page of the calling process. And third, a newly
created process inherits its process code page from its parent
process.

DosSetCp also sets, in the session to which the calling process
belongs, the code page for the session's default logical keyboard and
automatically flushes the keyboard buffer. It also sets the display
code page for the session's logical display. This setting of the code
page for the session's default logical keyboard and display overrides
any previous setting by DosSetCp, KbdSetCp, and VioSetCp by any
process in the same session.

Also see DosSetProcCp.

2-223

DosSetDateTime -
Set Current Date and Time

Purpose
DosSetDateTime is used to set the date and time that are maintained
by the operating system.

Calling Sequence
EXTRN DosSetDateTime:FAR

PUSH@ OTHER DateTime
CALL DosSetDateTime

;Date/time structure

Where

Date Time
is a structure that contains the following data items:

BYTEO
BYTE 1
BYTE2
BYTE3
BYTE4
BYTES
WORD6
WORDS

- Hours is the new hour.
- Minutes is the new minute.
- Seconds is the new second.
- Hundredths is the new hundredths of a second.
- Day is the day to be set.
- Month is the month to be set.
- Year is the year to be set.
- Timezone minutes from UTC.

Note: The numbers values listed in the above structure represent
decimal offsets.

Returns

IF AX = O then NO error

ELSE AX = error code

Remarks
The DayofWeek value is based on Sunday= to 0. Timezone is the
difference in minutes between the current time zone and UTC. This is
a positive number if earlier than UTC and a negative number if later.
For Eastern Standard Time this value would be 300 (5 hours earlier
than UTC).

2-224

DosSetFHandState -
Set File Handle State

Purpose
DosSetFHandState sets the state of the specified file.

Calling Sequence
EXTRN DosSetFHandState:FAR

PUSH WORD FileHandle ;File handle
PUSH WORD FileHandleState ;File handle state
CALL DosSetFHandState

Where

FileHandle
is the handle of the file to be set.

FileHandleState
is the file handle state and consists of the following bit fields:

• Inheritance flag
• Write-through flag
• Fail-errors flag
• Zero bit field.

File Handle State Bits

s 4 3 2 1 e g a 1 6 s 4 3 2 i e
e w F R R R R R I e e e R e e e

Inheritance Flag

If I= 0
File handle is inherited by a spawned process resulting
from a DosExecPgm call.

If I= 1
File handle is private to the current process. ,

W File Write-through

The file is opened as follows:

lfW=O
Writes to the file may be run through the DOS buffer cache.

2-225

DosSetFHandState -
Set File Handle State

If W = 1
Writes to the file may go through the DOS buffer cache but
the data is written (actual file 110 completed) before a syn
chronous write call returns. This state of the file defines it
as a synchronous file.

This bit is not inherited by child processes.

F Fail-Errors

Media 1/0 errors are handled as follows:

If F = 0
Reported through the system critical error handler.

If F = 1
Reported directly to the caller by way of the return code.

This bit is not inherited by child processes. Media 1/0
errors generated through an IOCtl category eight function
always get reported directly to the caller via return code.
The Fail-Errors function applies only to non-IOCtl
handle-based type file 110 calls.

O Zero bits

These bits must be set to zero. Any other values for
FileHandleState are invalid

R Reserved bits

These bits are reserved and should be set to the values
returned by DosQFHandState in these positions.

Returns

IF AX = 0 then NO error

ELSE AX = error code

2-226

DosSetFHandState -
Set File Handle State

Family API Considerations
Some options operate differently in the DOS mode than they do in
OS/2 mode. Therefore, the following restrictions apply to
DosSetFHandState when coding in the DOS mode:

• for FileHandle, the validity of the handle is not checked.
• Inheritance Flag must be set equal to zero.
• Write-through Flag must be set equal to zero.
• Fail-Errors Flag must be set equal to zero.

Remarks

OS/2 does not guarantee the order in which sectors are written, for
multiple sector writes. If an application requires several sectors
written in a specific order, the operator should issue them as sepa
rate synchronous write operations. Setting the synchronous (nonbuf
fered) 110 flag does not affect any previous writes. That data may
remain in the buffers.

When a critical error occurs and the application cannot solve it, crit
ical error handling is reset to be done by the system. This is done by
issuing DosSetFHandState and subsequently re-issuing the 110. The
expected critical error will re-occur and be passed to the system crit
ical error handler. The instant in time at which the effect of this func
tion is visible at the application level is unpredictable when
asynchronous 110 is pending.

The file handle state bits set by this function can be queried by
DosQFHandState.

2-227

DosSetFHe·lnfo
Set File ·Information

Purpose
DosSetFilelnfo specifies information for a file.

Calling Sequence
EXTRN DosSetFilelnfo:FAR

PUSH
PUSH
PUSH@
PUSH
CALL

WORD FileHandle
WORD FilelnfoLevel
OTHER FilelnfoBuf
WORD FilelnfoBufSize
DosSetFilelnfo

Where

FileHandle
is the file handle.

FilelnfoLeve/

;File handle
;File info data required
;File info buffer
;File info buffer size

is the level of file information being set. Level 1 information is
specified in the following standard format:

2 bytes -
2 bytes -
2 bytes -
2 bytes -
2 bytes -
2 bytes -

FilelnfoBuf

File date of creation
File time of creation
File date of last access
File time of last access
File date of last write
File time of last write

is the storage area where the system gets the file information.

FilelnfoBufSize
is the length of FilelnfoBuf.

Returns

IF AX= 0 then NO error

ELSE AX = error code

2-228

Remarks

DosSetFilelnfo -
Set File Information

Level 1 is currently the only defined level of information. The date
and time formats are the same as those for the directory entry.

The DosSetFilelnfo level 1 structure is a prefix of the DosQFilelnfo
level 1 structure.

DosSetFilelnfo will work only for files opened in a mode that allows
write-access.

A zero value in the date and time components of a field does not
change the field. For example, if both "last write date" and "last
write time" are specified as zero in the level one information struc
ture, then both attributes of the file are left unchanged. If either "last
write date" or "last write time" are specified as non-zero, then both
attributes of the file will be set to the new values.

2-229

DosSetfileMode
Set File Mode

Purpose
DosSetFileMode changes the mode (attribute) of the specified file.

Calling Sequence
EXTRN DosSetFileMode:FAR

PUSH@ ASCIIZ FileName ;File path name
PUSH WORD NewAttribute ;New attribute of file
PUSH DWORD e ;Reserved (must be zero)
CALL DosSetFileMode

Where

FileName
is the file path name.

New Attribute
is the file's new attribute.

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks
Attributes for Volume Label (0008H) and Subdirectory (0010H) cannot
be changed using DosSetFileMode. If the above referenced attributes
are used to change a file's mode, an error code is returned.

2-230

File attributes are defined as follows:

0001H = read only file
0002H = hidden file
0004H =system file (excluded from

normal directory searches)
0008H =volume label
001 OH = subdirectory
0020H =file archive
0040H = reserved
0080H = reserved
0100H = reserved
0200H =reserved
0400H = reserved
0800H = reserved
1000H =reserved
2000H = reserved
4000H =reserved
8000H = reserved

DosSetFileMode -
Set File Mode

2-231

DosSetFslnfo ·-
Set Fiie System lnformalit;>n

Purpose
DosSetFslnfo sets information for a file system device.

Calling Sequence
EXTRN DosSetFsinfo:FAR

PUSH WORD DriveNumber ;Drive number
PUSH WORD FSinfoLevel ;File system data type
PUSH@ OTHER FSinfoBuf ;File system info buffer
PUSH WORD FSinfoBufSize ;File system info buffer size
CALL DosSetFslnfo

Where

DrlveNumber
is the logical drive number, for example, O =default and 1 = A.

FSlnfoLevel
is the level of file information to be set.

Level 2 information is specified in the following sta~dard format:

1 byte = length of Volume Label (null not included)
N bytes= Volume Label ASCllZ string

FSlnfoBuf
is the storage area where the system gets the new file system
information.

FS/nfoBufSize
is the length of FSlnfoBuf.

Returns

IF AX= O then NO error

ELSE AX = error code

2-232

DosSetf slnfo -
Set File System Information

Remarks

Trailing blanks supplied at volume label definition time are not
returned by DosQFslnfo.

File system information can only be set if the volume is opened in a
mode that allows write-access.

2-233

DosSetMaxFH --
Set Maximum File Handles

Purpose
DosSetMaxFH defines the maximum number of file handles for the
current process.

Calling Sequence
EXTRN DosSetMaxFH:FAR

PUSH WORD NumberHandles ;Number of file handles
CALL DosSetMaxFH

Where

NumberHandles
is the total number of file handles to be provided.

Returns

IF AX = 0 then NO error

ELSE AX = error code

Remarks
All currently open file handles are preserved.

2-234

DosSetProcCp -
Set Process Code Page

Purpose
DosSetProcCp allows a process to set its code page.

EXTRN DosSetProcCp:FAR

PUSH WORD CodePage
PUSH WORD Reserved
Call DosSetProcCp

Where

CodePage

;Code page identifier
;Reserved

is a code page identifier word that has one of the following values:

Identifier
437
850
860
863
865

Reserved

Description
IBM PC US 437 code page
Multilingual code page
Portuguese code page
Canadian-French code page
Nordic code page

is a reserved word that must be set to zero.

Returns

IF AX = 0 then no error

ELSE AX = error code.

Remarks
DosSetProcCp sets the process code page of the calling process.
The code page of a process is used in the following ways. First, the
printer code page is set to the process code page through the file
system and printer spooler (the system spooler must be installed)
when the process makes an open printer request. Calling
DosSetProcCp does not affect the code page of a printer opened prior
to the call and does not affect the code page of a printer opened by
another process. Second, country dependent information will, by
default, be retrieved encoded in the code page of the calling process.

2-235

DosSetProcCp -
Set Process Code Page

And third, a newly created process inherits its process code page
from its parent process. DosSetProcCp does not affect the display or
keyboard code page.

Also see DosSetCp.

2-236

DosSetPrty -
Set Process Priority

Purpose
DosSetPrty allows the caller to change the base priority of a child
process or thread in the current process.

Calling Sequence
EXTRN DosSetPrty:FAR

PUSH
PUSH
PUSH
PUSH
CALL

WORD Scope ;Indicate scope of change
WORD PriorityClass ;Priority class to set
WORD PriorityDelta ;Priority delta to apply
WORD ID ;Process or thread ID
DosSetPrty

Where

Scope
is used to define the scope of the request.

If value= O
the priority of the indicated process and all its threads will be
changed. Any process may be specified.

If value= 1
the priority of the indicated process and all its threads will be
changed with the priorities of all descendant processes,
(except detached processes) and their threads will be
changed. The indicated process must be the current process,
or must have been created by the current process as a
non-detached process. When the indicated process is termi
nated, its descendants can still be accessed.

If value= 2
the priority of a single thread within the current process will be
changed.

PriorityClass
is used to set the priority class of a process. The values and their
meanings are:

2-237

DosSetPrty -
Set Process Priority

O = no change, leave as is
1 = idle-time
2 =regular
3 =time-critical

PriorityDelta
is the delta priority to apply to the process's current base priority
level. This value must range from -31 to +31.

ID is either a process ID (scope= O or 1) or a thread ID (scope = 2).
If this operand is equal to 0, the current process or thread is
assumed.

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks
The OS/2 scheduler has a concept of priority classes and priority
levels. Through this system call, threads may move between classes
in response to changes in their execution environments. Within each
class, a thread's priority level may vary either through system action
or through this system call. System initiated priority variation is per
formed as a combination of a specific thread's actions and the overall
system activity.

Priority Classes A Time-Critical thread is one of the highest priority.
Any runable Time-Critical threads, will execute before any Regular or
Idle-Time threads. Time-Critical threads have a static priority which
is not varied by OS/2. They are scheduled among themselves in pri
ority order with round-robin scheduling of threads of equal priority.

The majority of threads fall into the Regular thread class. The priority
level of a Regular thread is varied by OS/2 around a base value
according to the activity of the thread and the system at any time.
The base value is set by the thread itself.

An Idle-Time thread is low priority and executes only when there are
no Regular or Time-Critical threads to execute. Idle-Time threads

2-238

DosSetPrty -
Set Process Priority

have a static priority that is not varied by OS/2. They are scheduled
among themselves in priority order with round-robin scheduling of
threads of equal priority.

Priority Levels: For each of the above priority classes, there are 32
distinct priority levels, 0 to +31. Whenever this request is issued
specifying a priority class, the base defaults to 0 for the new class if
not otherwise specified.

A process priority consists of a computed priority value that is based
upon the process's display status (foreground or background), its
recent 110 and processor time-usage history, and other fB:ctors. A
user-settable value is added to the computed priority to produce the
actual priority used by the scheduler. Thus, specifying a larger pri
ority allows a process to obtain better Processor scheduling than it
normally would. A smaller priority gives the process less Processor
resource than it would normally receive.

The argument to this call specifies a signed delta value. That value is
added to the current priority, the result is restricted to the legal range
based on the process current Priority Class.

When used with PriorityClass to change to a different class, the delta
value applies to the base priority. If PriorityClass is specified, then a
new base level of 0 will be assigned the target thread and any
PriorityDelta specified will be relative to 0.

The process ID argument specifies which process is to be affected by
the call. The Scope determines the extent of the priority change. A
process may change the its own priority, of any process which is a
descendent, or of one of its threads. When changing the priority of
another process or its descendants, only the default priority is
changed. Any thread which has specifically changed its priority is
unaffected.

When a thread is created, it is initially dispatched in the same class
and priority as its parent.

2-239

Dos~et$~ssi~~: ,
-s•t::Sessi~n Stata$

Purpose
DosSetSession sets the status of a child session.

Calling Sequence
EXTRN DosSetSession:FAR

PUSH WORD SessID
PUSH@ OTHER StatusData
CALL DosSetSession

Where

SesslD

;Session ID
;Session status data

is the ID of the target session. The value specified for SesslD
must have been returned on a prior call to DosStartSession.

StatusData
is a structure that contains the session status data.

Size
WORD
WORD
WORD

Length

Description
Length
Selectlnd
Bond Ind

is the length of the data structure in bytes including Length itself.
This value should be 6.

Selectlnd
specifies whether the target session should be flagged selectable
or non-selectable.

If value= O
leave current setting unchanged.

If value= 1
selectable

If value= 2
non-selectable

2-240

DosSetSession -
Set Session Status

Bondlnd
specifies which session to bring to the foreground the next time
the parent session is selected.

If value= O
leave current setting unchanged

If value= 1
establishes a bond between the parent session and the child
session. The child session is brought to the foreground the
next time the parent session is selected. If the child session is
selected, the child session is brought to the foreground.

If value= 2
specifies to bring the parent session to the foreground the next
time the parent session is selected and to bring the child
session to the foreground if the child is selected. Any bond
previously established with a child session is broken.

Returns

IF AX = 0 then NO error

ELSE AX = error code

Remarks
DosSetSession sets/resets one or both of the following parameters
related to a child session. The parameters can be set individually.
Either parameter can be changed without affecting the current setting
of the other.

• Selectable/non-selectable: This parameter allows a parent
session to set one of its child sessions selectable or
non-selectable.

• Bond/no bond: This parameter allows a parent session to bond
one of its child sessions to itself. This means if the operator
selects the parent session from the Program Selector the child
session is brought to the foreground.

These parameters affect selections made by the operator from the
Program Selector Switch list, however, they do not affect selections
made by the parent session. When a parent session selects its own

2-241

DosSetSession -
Set Session Status

session, the parent is brought to the foreground even if a bond is in
effect. When a parent session selects a child session, the child is
brought to the foreground even if the parent had set the child
non-selectable.

DosSetSession may only be issued by a parent session for a child
session. Neither the parent session nor any grandchild, may be the
target of this call. DosSetSession may only be used to change the
status of child sessions which were originally started by the caller
with DosStartSession specifying Related equal 1.

A bond established between a parent session and a child session can
be broken by reissuing DosSetSession and specifying either

Bondlnd = 2 to break the bond, or

Bondlnd = 1 to establish a bond with a different child session. In
this case the bond with the previous child is broken.

Assume a bond is established between session A and its immediate
child session B. Assume another bond is established between
session B and its immediate child session C. Now if the operator
selects session A session C is brought to the foreground. However, if
session A selects its own session, session A is brought to the fore
ground. If session A selects session B, session C is brought to the
foreground. Note that, in the latter case, the bond between B and C is
honored.

Assume a bond is established between session A and its immediate
child session B, and assume B is non-selectable. The operator
cannot select session B directly. However, if the operator selects
session A, session B is brought to the foreground.

A parent session can run in either the foreground or background
when DosSetSession is issued. DosSetSession can only be issued by
the process that originally started (using DosStartSession) the SesslD
specified.

2-242

DosSetSigHandler -
Set Signal Handler

Purpose
DosSetSigHandler notifies OS/2 of a handler for a signal. It may also
be used to ignore a signal or install a default action for a signal.

Calling Sequence
EXTRN DosSetSigHandler:FAR

PUSH@
PUSH@
PUSH@
PUSH
PUSH
CALL

OTHER Routine
DWORD PrevAddress
WORD PrevAction
WORD Action
WORD SigNumber
DosSetSigHandler

Where

Routine

;Signal handler
;Previous handler (returned)
;Previous action (returned)
;Indicate request type
;Signal number of interest

entry point of routine which is to receive control when a signal
equal to SigNumber is issued.

Prev Address
is where the address of the previous signal handler is returned.
This operand may be coded as null (= 0) in which case it will be
ignored.

PrevAction
is where the Action of the previous signal handler is returned.
Only values Oto 3 are returned. This operand may be coded as
null (= 0) in which case it will be ignored.

Action
is an indicator of the type of request:

If value= 0
the system default action is installed for the signal.

If value= 1
the signal is to be ignored.

If value= 2
the routine receives control when the SigNumber occurs.

2-243

DosSetSigHandler
Set Signal Handler

If value= 3
it is an err~r for any program to signal this SigNumber to this
process.

If value= 4
the current signal is reset without affecting the disposition of
the signal.

SigNumber
is the signal number to be intercepted by this signal handler. The
signal numbers defined are:

Number Term
1 (SIGINTR)
3 (SIGTERM)
4 (SIG BREAK)
5
6
7

Definition
Ctrl-C
program terminated
Ctrl-Break
Process flag A
Process flag B
Process flag C

The following chart indicates what signal to specify to cause the
signal handler to get control for the CTRL-C and CTRL-Break key
sequences in each of the keyboard modes (ASCII and Binary):

ASCII Mode BINARY Mode

CTRL-C SIGINTR

CTRL-Break SIGINTR SIG BREAK

Returns

IF AX= 0 then NO error

ELSE AX = error code

2-244

DosSetSigHandler -
Set Signal Handler

Family API Considerations
Some options operate differently in the DOS mode than they do in
OS/2 mode. Therefore, the following restriction applies to
DosSetSigHandler when coding in real mode:

The only signal recognized in DOS is SIGINTR (Ctrl-C).

SIGINTR is fully supported, and SIGBREAK is related to SIGINTR.
Therefore, if SIGINTR is specified, both SIGINTR and SIGBREAK are
transferred to the SIGINTR handler. SIGBREAK is permitted as a
coded value, but the request to set SIGBREAK is ignored. To be com
patible in all environments, SIGBREAK and SIGINTR should be con
sidered together in all cases.

Remarks
When the signal indicated by SigNumber occurs, the signal handling
routine receives control with:

(SS:SP) = far return address
(SS:SP+4) = SigNumber being processed
(SS:SP+6) = SigArg furnished on the DosFlagProcess request, if

appropriate.

Other than SS, SP, CS, IP and flags, all other registers contain the
same values they contained at the time the signal was received. The
handler may exit by executing an intersegment return instruction, or
by manually setting the stack frame to some known state and jumping
to some known location. If the former option is selected, execution
will resume where it was interrupted, and all registers will be
restored to their values at the time of the interruption.

The signal handler is given control under the first thread of a process,
not a thread created by the DosCreateThread system request.

To return from the signal, the handler must remove the signal number
and signal argument passed as parameters. For handlers written in
most high-level languages, this is done automatically. A handler
written in assembly language must execute a far RET 4 instruction or
its equivalent, to return to the caller.

2-245

DosSetSigHandler
Set Signal Handler

The signal handler may also reset the stack pointer to some previous
valid stack frame and jump to some other part of the program.

The values returned in PrevAddress and PrevAction are to be used
for restoring the previous signal handler When the current process no
longer wishes to intercept this signal. For Action= 4, no values will
be returned for PrevAddress or PrevAction.

When a signal is issued from the base keyboard device driver in
response to a Ctrl-C or Ctrl-Break key press, the default action will
terminate the process if the application did not install a signal
handler for any signal numbers 1-4.

It will be invalid to issue this system call when thread 1 has termi
nated. If thread 1 terminates with other threads still active, all signals
will be reset to the default action.

For signals of type SIGINTR or SIGBREAK, a call to
DosSetSigHandler also determines which process within the current
session will be signalled as a result of a device driver call to Device
Helper Services for the SendEvent function and CTRL-C (or
CTRL-BREAK) event type (see the OS/2 Technical Reference, Volume
1, chapter nine for Device Helper Services discussion). This process
is known as the "signal focus" for SIGINTR (or SIGBREAK) within its
session. The signal focus for SIGINTR need not be the same process
as the signal focus for SIGBREAK. The signal focus for a session is
determined as follows:

Initially, a session has no signal focus for SIGINTR (or SIGBREAK). A
process becomes the signal focus for SIGINTR (or SIGBREAK) within
its session if it calls DosSetSigHandler with ActionCode equal to 1, 2,
or 3. A process remains the signal focus until;

• the process terminates.
• the process calls DosSetSigHandler with ActionCode equal to 0.
• another process calls DosSetSigHandler with ActionCode equal

to 1, 2, or 3.

In the first two cases, the parent or most closely related ancestor
process that has a handler installed for the appropriate signal

2-246

DosSetSigHandler -
Set Signal Handler

becomes the focus. If no eligible process exists, the session ceases
to have a signal focus for that signal.

If a device driver makes a SendEvent call for CTRL-C or
CTRL-BREAK and the current session has no focus for the corre
sponding signal, all processes in the session are signaled with
SIGTERM to terminate.

2-247

DosSetVec -
Establish Handler for Exception Vector

Purpose
DosSetVec allows a process to register an address to be used when a
machine exception occurs.

Calling Sequence
EXTRN DosSetVec:FAR

PUSH WORD VecNum
PUSH@ OTHER Routine
PUSH@ DWORD PrevAddress
CALL DosSetVec

Where

VecNum

;Function request code
;Handler routine
;Previous handler address (returned)

is the number of the vector to be serviced by this routine. Legal
numbers are:

00 = divide overflow
04 = overflow
05 =bound
06 = invalid opcode
07 = processor extension not available
16 = processor extension error

Routine
is a routine to be entered when the exception occurs. If this
parameter is 0, any previous address is de-registered.

Prev Address
is where the address of the previous handler routine is returned.
This is provided so a handler may be set then later restored to the
previous handler.

Returns

IF AX= 0 then NO error

ELSE AX = error code

2-248

DosSetVec -
Establish Handler for Exception Vector

Family API Considerations
Some options operate differently in the DOS mode than they do in
OS/2 mode. Therefore, the following restriction applies to DosSetVec
when coding in the DOS mode:

• VecNum = 7 not supported.

Remarks
DosSetVec allows a process to register an address to be used when a
machine exception occurs. The process is analogous to setting an
address in the interrupt vector table when running in 8086 mode.

Should an exception occur, and the process has registered a handler,
that handler is entered as if its address had been stored in the CPUs
interrupt vector, except that interrupt is still enabled. If no address
has been registered for that vector, the process is terminated.

When a process registers an exception handler for VecNum 7
(processor extension not available) the machine status word (MSW)
for that process will be set to indicate a numeric processor extension
(NPX) 287 is not present in the machine. The Emulate bit will be set
and the Monitor Processor bit will be reset. This is done without
regard for the true state of the hardware.

When a process de-registers a handler for VecNum 7, the MSW will
be set to reflect the true state of the hardware.

When an NPX287 exception is being processed, the NPX287 status
word will be passed to the exception handler by being pushed on the
stack prior to the exception handler being invoked. When the excep
tion handler has completed execution, this word must be popped from
the stack before an IRET is issued to return to the exception handler
interface routine.

2-249

DosSetVerify -
Set/Reset Verify Switch

Purpose
DosSetVerify sets the verify switch.

Calling Sequence
EXTRN DosSetVerify:FAR

PUSH WORD VerifySetting ;New value of verify switch
CALL DosSetVerify

Where

VerifySetting
is the new state of Verify.Mode for the requesting process.

If value= 0
verify mode is deactivated.

If value= 1
verify mode is activated.

Returns

IF AX = 0 then NO error

ELSE AX = error code

Remarks
When verify is on, OS/2 performs a verify operation each time it does
a file write to assure proper data recording on the disk. Although
disk recording errors are rare, this function has been provided for
applications which may wish to verify the proper recording of critical
data.

2-250

DosSleep -
Delay Process Execution

Purpose
DosSleep suspends the current thread for a specified time, or if the
requested interval is 0, gives up the remainder of the current time
slice.

Calling Sequence
EXTRN DosSleep:FAR

PUSH DWORD Timelnterval ;Interval size
CALL DosSleep

Where

Tlmelnterval
is the interval in milliseconds until the thread is awakened.

Returns

IF AX = 0 then NO error

ELSE AX = error code

Family API Considerations
Some options operate differently in the DOS mode than they do in
OS/2 mode. Therefore, the following restrictions apply to DosSleep
when coding in the DOS mode :

• DosSleep accuracy can be in error by 0.5%.
• DosSleep can degrade system performance of non-foreground

program operations when DOS mode is in foreground.

Remarks
DosSleep suspends the current thread for the specified time period.
The actual time it is asleep may be off by a clock tick or two,
depending on the execution status of the other threads running in the
system.

If the time is 0, then the thread foregoes the remainder of the current

2-251

DosSleep -
Delay Process Execution

time slice and allows any other ready threads of equal priority to run
with the current thread for its next slice. Since the amount of ~leep
time specified is 0, an immediate return with 0 delay is made if no
other ready thread is found.

If the time is non-0, the time will be rounded up to the resolution of
the scheduler clock.

If DosSleep is used to regularly poll an external source to determine
the occurrence of some event, a time equal the longest response
interval should be used.

For short time intervals the rounding-up process combined with the
thread priority interactions may cause a sleeping interval to be longer
than the requested time. Also, when a process completes sleeping, it
is scheduled for execution. But that execution could be delayed by
hardware interrupts or by another thread running at a higher priority.
A program should not use the DosSleep call as a substitute for a real
time clock because rounding of the sleep interval will cause cumula
tive errors.

Note: For a time of 0, DosSleep will not yield to a thread of lower pri
ority.

2-252

DosStartSession -
Start Session

Purpose
DosStartSession provides an application program interface to start
another session and specify the name of the program to start in the
session.

Calling Sequence
EXTRN DosStartSession:FAR

PUSH@ OTHER StartData ;Start session data
;Session ID (returned)
;Process ID (returned)

PUSH@ WORD SessID
PUSH@ WORD PIO
CALL DosStartSession

Where

StartData
is a structure containing the data describing the session to be
started.

Length

Size
WORD
WORD
WORD
WORD
DWORD
DWORD
DWORD
DWORD

Description
Length
Related
FgBg
TraceOpt
PgmTitle
PgmName
Pgmlnputs
TermQ

is the length of the data structure in bytes including Length itself.
For OS/2, Length is 24 bytes.

Related
specifies whether the session created is related to the calling
session.

Value= O
new session is an independent session (not related)

2-253

DosStartSession
Start Session

Value= 1
new session is a child session (related)

An independent session is not a child session and cannot be con
trolled by the calling program. It cannot be specified as the target
of OosSelectSession, OosSetSession, or OosStopSession. The
TermQ parameter is ignored for independent sessions, and the
SesslD and PIO are not returned.

The calling program (parent session) may specify a child session
as the target of DosSelectSession, OosSetSession, and
OosStopSession, for related sessions. The TermQ, SesslO, and
PIO parameters are applicable when Related= 1 is specified.
Note also that for related sessions, although a parent
session/child session relationship is established, a parent
process/child process relationship is not established.

FgBg
specifies whether the new session should be started in the fore
ground or background.

If value= O
start session in foreground.

If value= 1
start session in background.

TraceOpt
specifies whether the program started in the new session should
be executed under conditions for tracing.

• If value = 0, no trace.
• If value = 1, trace.

PgmTitle
is the far address of an ASCllZ string containing the program
title. The string can be up to 31 bytes long including the termi
nating byte of 0. If the far address specified is 0, or if the ASCllZ
string is null, the initial title is PgmName minus any leading drive
and path information.

PgmName
is the far address of an ASCllZ string containing the fully-qualified
drive, path, and filename of the program to be loaded.

2-254

Pgmlnputs

DosStartSession -
Start Session

is the far address of an ASCllZ string containing the input argu
ments to be passed to the program.

TermQ
is an optional parameter. It is either 0 or the far address of an
ASCllZ string containing the fully-qualified path and filename of an
OS/2 queue. The OS/2 session manager writes a data element
into the queue specified when the child session created as a
result of this DosStartSession terminates. A parent session
issues DosReadQueue to receive notification when a child session
terminates. The request word returned by DosReadQueue is 0.
The data element structure has the following format:

Size
WORD
WORD

Description
Session ID of child
Result code

DosReadQueue is issued by the process that originally issued the
DosStartSession request. This process is the only process that
has addressability to the notification data element. The NoWait
parameter on DosReadQueue must be set equal to zero. After
reading and processing the data element, the caller frees the
segment containing the data element using DosFreeSeg.

SesslD

PID

is the session ID associated with the created child session.
SesslD is returned only when the specified value for Related
equals 1. The returned SesslO is specified on subsequent calls to
DosSelectSession, DosSetSession, and DosStopSession.

is the process ID associated with the created child process. PIO is
returned only when the value Related equal 1 is specified. The
PIO returned cannot be used on any OS/2 calls, (for example,
DosSetPrty, which require a parent process/child process
relationship).

Returns

IF AX= 0 then NO error

ELSE AX = error code

2-255

DosStartSession
Start Session

Remarks
New sessions can be started in the foreground only when the caller's
session, or one of the caller's descendant sessions, is currently exe
cuting in the foreground. The new session appears in the Program
Selector Switch list.

Foreground/Background Considerations: if FgBg = O is specified,
and if neither the calling program nor any of its descendant sessions
is executing in the foreground, the new session is started in the back
ground. A unique error code is also returned in AX in this case.

Parent/Child Relationships: when Related= 1 is specified,
DosStartSession establishes a parent session/child session relation
ship. A parent process/child process relationship is not established.
The parent process is the shell process just as if the operator had
started the program from the shell menu. A child program started
through DosStartSession is therefore not a descendant of the calling
program and does not inherit the calling process environment, open
file handles, and other items passed to child processes through
DosExecPgm. Furthermore, the PIO returned by DosStartSession
may not be used on any OS/2 calls, (for example, DosSetPrty) which
require a parent process/child process relationship. Within any one
session, DosStartSession, specifying Related= 1, may be issued by
one and only one process.

PgmName/Pgmlnputs Considerations: the program identified by
PgmName is executed directly with no intermediate secondary
command (CMD.EXE) process. Alternatively, the program can be
executed indirectly through a secondary command (CMD.EXE)
process by specifying CMD.EXE for PgmName and by specifying
either /C or /K followed by the drive, path, and filename of the appli
cation to be loaded for Pgmlnputs. If the /C parameter is inserted at
the beginning of the Pgmlnputs string, when the application program
terminates, the session will terminate. If the /K parameter is inserted
at the beginning of the Pgmlnputs string, when the application termi
nates, the operator will see the OS/2 command line prompt displayed.
The operator can then either enter the name of another program or
command to execute or enter the OS/2 EXIT command to terminate
the session.

2-256

DosStartSession -
Start Session

When the PgmName far address is 0 or the ASCllZ string is null, the
program specified as a parameter to the shell on the ProtShell state
ment in the CONFIG.SYS file will be executed and passed the speci
fied Pgmlnputs. This is the OS/2 mode command processor
(CMD.EXE) by default.

The PgmName and Pgmlnputs ASCllZ name strings combined length
may not exceed 384 characters.

Parent/Child Termination Considerations: a parent session has only
one termination queue. The parent creates the termination queue
before it issues its first DosStartSession call that specifies the name
of the queue. An application can use the termination queue for
another purpose by passing a unique request parameter through the
DosWriteQueue/DosReadQueue interface. Request parameter values
O through 99 are reserved for OS/2. Request parameter values
greater than or equal to 100 are available for application use.

If a parent session specifies the TermQ parameter on more than one
DosStartSession call, the parameter is ignored on subsequent calls.
Once a parent establishes a termination queue, the queue is posted
when any child session terminates. The queue is posted regardless
of who terminates the child session (for example, child, parent, or
operator) and whether the termination is normal or abnormal.

When a child session terminates, the result code returned in the
TermQ data element will be the result code of the program specified
by PgmName assuming either:

1. the program is executed directly with no intermediate secondary
command (CMD.EXE) process, or

2. the program is executed indirectly through a secondary command
(CMD.EXE) process and the /C parameter is specified.

If the program is executed indirectly through a secondary command
(CMD.EXE) process and the /K parameter is specified, the result code
of the command process is returned.

When a child session is running in the foreground at the time it termi
nates, the parent session becomes the foreground session. When a
parent session terminates, any child sessions it created with

2-257

DosStartSession
Start Session

DosStartSession, specifying Related= 1, are terminated. When an
independent session, created specifying Related= 0, is running in
the foreground at the time it terminates, the shell chooses the next
foreground session.

2-258

DosStopSession -
Stop Session

Purpose
DosStopSession terminates a session previously started with
DosStartSession.

Calling Sequence
EXTRN DosStopSession:FAR

PUSH
PUSH
PUSH
CALL

WORD TargetOption
WORD SessID
DWORD Reserved
DosStopSession

Where

TargetOption

;Target option
;Session ID
;Reserved (must be zero)

specifies whether the session specified by SesslD or all sessions
should be terminated.

If value= 0
terminate session specified.

If value= 1
terminate all child sessions and descendant sessions.

SesslD
is the ID of the session to be terminated. The value specified for
SesslD must have been returned on a prior call to
DosStartSession. SesslD is ignored if TargetOption = 1.

Reserved
is a DWORD of O's.

Returns

IF AX= 0 then NO error

ELSE AX = error code

2-259

DosStopSession
Stop Session

Remarks
DosStopSession may only be issued by a parent session for a child
session. Neither the parent session itself nor any grandchild, and so
forth, may be the target of this call. However, if the child session
specified on DosStopSession does have descendants, these sessions
will also be terminated.

DosStopSession may only be used to terminate child sessions ori
ginally started by the caller with DosStartSession specifying Related
= 1. That is, sessions started as independent sessions may not be
stopped.

If a child session is running in the foreground at the time it is stopped,
the parent session becomes the foreground session. DosStopSession
breaks any bond that existed between the parent session and the
child session specified.

A parent session may be running in either the foreground or back
ground when DosStopSession is issued.

DosStopSession can only be issued by the process that originally
started (using DosStartSession) the SesslD specified.

The process running in the session specified on the DosStopSession
call may refuse to terminate. DosStopSession will return a normal
return code in AX in this case. The only way to ensure that the target
session has terminated is to wait upon notification through the termi
nation queue specified on DosStartSession.

2-260

DosSubAlloc -
Suballocate Memory within Segment

Purpose
DosSubAlloc allocates memory from a segment previously allocated
by DosAllocSeg or DosAllocShrSeg and initialized by DosSubSet

Calling Sequence
EXTRN DosSubAlloc:FAR

PUSH WORD SegSelector
PUSH@ WORD BlockOffset
PUSH WORD Size
CALL DosSubAlloc

Where

SegSelector

;Segment selector
;Block Offset (returned)
;Size of requested block

is the selector of the data segment from which the memory should
be allocated.

BlockOffset
is where the offset to the block allocated is returned.

Size
is the size of the memory block requested in bytes.

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks
DosSubAlloc allocates a block of memory from a segment previously
allocated by DosAllocSeg or DosAllocShrSeg and initialized by
DosSubSet.

Allocation size must be a multiple of four bytes. It will be rounded if
not. The maximum value for the size parameter is the size of the
segment allocated by DosAllocSeg or DosAllocShrSeg minus 8. Note

2-261

DosSubAlloc -
Suballocate Memory within Segment

that no paragraph alignment is required; all requests are serviced on
a byte alignment basis.

The requestor must first call DosSubSet, after allocating the segment,
and before attempting to call DosSubAlloc to allocate memory within
the segment. Refer to "DosSubSet - Initialize or Set Allocated
Memory" on page 2-264 for more information.

2-262

DosSubFree -
Free Memory Suballocated Within Segment

Purpose
DosSubFree frees memory previously allocated by DosSubAlloc.

Calling Sequence
EXTRN DosSubFree:FAR

PUSH WORD SegSelector
PUSH WORD BlockOffset
PUSH WORD Size
CALL DosSubFree

Where

SegSelector

;Segment selector
;Offset of memory block to free
;Size of block in bytes

is the selector of the data segment from which the memory should
be freed.

BlockOffset
is the offset of the memory block to be freed. The value specified
must equal the BlockOffset returned on a previous DosSubAlloc
call.

Size
is the size of the block to be freed in bytes.

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks
DosSubFree is used to free a block of memory that was allocated with
DosSubAlloc. If the block specified overlaps unallocated memory, an
error is generated. Like DosSubAlloc, the size parameter must be a
multiple of four bytes, it will be rounded it not.

2-263

DosSubSet -
Initialize or Set Allocated Memory

Purpose
DosSubSet is used to initialize a segment for suballocation or to
increase the size of a previously initialized, suballocated segment.

Calling Sequence
EXTRN DosSubSet:FAR

PUSH WORD SegSelector
PUSH WORD Flags
PUSH WORD Size
CALL DosSubSet

Where

SegSelector

;Segment selector
;Parameter flags
;Size of a block

is the selector of the target data segment.

Flags
is set to 1 indicating initializing a segment, or to 0, indicating
increasing the size of a segment already initialized.

Size
is the size of the segment in bytes.

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks
To initialize a segment, issue DosSubSet before issuing DosSubAlloc
and set flags= 1. The segment must have been previously allocated
with DosAllocSeg or DosAllocShrSeg. To increase the size of a
segment, issue DosReallocSeg before issuing DosSubSet. Failure to
issue DosSubSet after changing the size of a segment may yield
unpredictable results.

2-264

DosSubSet -
Initialize or Set Allocated Memory

The size parameter should be a multiple of four bytes, or it will be
rounded. Note in DosSubSet, a size parameter of O indicates the
segment is 64K, while in DosSubAlloc and DosSubFree, a size param
eter of 0 is an error. Other than this special case of 0 meaning 64KB,
the minimum size which can be set is 12 bytes.

2-265

DosSuspendThread -
Suspend Thread Execution

Purpose
DosSuspendThread temporarily suspends thread execution until a
DosResumeThread call is made for that thread ID.

Calling Sequence
EXTRN DosSuspendThread:FAR

PUSH WORD ThreadID
CALL DosSuspendThread

Where

ThreadlD

;Thread ID of thread to suspend

is the Thread ID of the thread to be suspended.

Returns

IF AX = 0 then NO error

ELSE AX = error code

Remarks
The specified thread may not be suspended immediately because it
may have some system resources locked that should be freed first.
However, the thread is not allowed to execute further application
program instructions until a corresponding DosResumeThread is
issued.

A thread can only suspend threads within its process.

2-266

DosTimerAsync -
Start Asynchronous Time Delay

Purpose
DosTimerAsync starts a timer that runs asynchronously to the thread
issuing the request and clears a system semaphore when the speci
fied interval expires.

Calling Sequence
EXTRN DosTimerAsync:FAR

PUSH DWORD Timelnterval
PUSH DWORD SemHandle
PUSH@ WORD Handle
CALL DosTimerAsync

Where

Timelnterval

;Interval size
;System semaphore handle
;Timer handle (returned)

is the number of milliseconds (rounded up to the next clock tick)
that passes before the semaphore is cleared.

SemHandle
is the handle of the system semaphore used to communicate the
time out to the calling thread. This semaphore should be set by
DosSemSet before DosTimerAsync is called.

Handle
is where the timer handle is returned. This handle may be passed
to DosTimerStop to stop this timer before its time interval expires.

Returns

IF AX= 0 then NO error

ELSE AX = error code

2-267

DosTimerAsync -
Start Asynchronous Time Delay

Remarks
DosTimerAsync is used to wait for a single asynchronous time. The
thread waits for the timeout by issuing a DosSemWait.

This function is the asynchronous analog of DosSleep. It allows a
thread to start a timer while it is performing another task. This timer
can be cancelled by calling the DosTimerStop function with the timer
handle returned by DosTimerAsync.

If another time out is needed, the semaphore is set and
DosTimerAsync is reissued. To ensure reliable detection of the timer
expiration, the system semaphore should be set prior to calling
DosTimerAsync.

2-268

Purpose

DosTimerStart -
Start Periodic Interval Timer

DosTimerStart starts a periodic interval timer that runs asynchro
nously to the thread issuing the request.

The semaphore is continually cleared at the specified time interval
until the timer is turned off by DosTimerStop.

Calling Sequence
EXTRN DosTimerStart:FAR

PUSH DWORD Timeinterval
PUSH DWORD SemHandle
PUSH@ WORD Handle
CALL DosTimerStart

Where

Timelnterval

;Interval size
;System semaphore handle
;Timer handle (returned)

is the number of milliseconds (rounded up to the next clock tick)
that passes before the semaphore is cleared.

SemHandle
is the handle of the system semaphore used to communicate the
time out to the calling thread. This semaphore should be set by
DosSemSet before the next clear by the timer.

Handle
is where the timer handle is returned. This handle may be passed
to DosTimerStop to stop the periodic timer.

Returns

IF AX= 0 then NO error

ELSE AX = error code

2-269

DosTimerStart -
Start Periodic Interval Timer

Remarks
DosTimerStart allows a timer to start and run asynchronously to a
thread. A timer interval is cancelled by using the timer handle in the
DosTimerStop call. This prevents the semaphore indicated in the
DosTimerStart call from being sent notifications.

The application detects the expirations of the timer when the
semaphore is set prior to the next expiration of the timer. When an
application waits for this semaphore to clear, more than one clearing
of the timer may occur before the application resumes execution. If it
is necessary to determine the actual elapsed time, the Global Infor
mation Segment milliseconds field can be saved prior to calling
DosTimerStart. This saved value is compared to the current value
when the process resumes. See "DosGetlnfoSeg - Get Address of
System Variables Segment" on page 2-83 for more information
regarding the Global Information Segment.

2-270

Purpose

DosTimerStop -
Stop Interval Timer

DosTimerStop stops a periodic interval timer started by
DosTimerStart, or an asynchronous timer started by DosTimerAsync.

Calling Sequence
EXTRN DosTimerStop:FAR

PUSH
CALL

WORD Handle
DosTimerStop

Where

Handle

;Handle of the timer

is the handle of the timer to be stopped.

Returns

IF AX = 0 then NO error

ELSE AX = error code

Remarks
DosTimerStop is used to stop a periodic interval timer or asynchro
nous timer from running. No assumptions can be made about the
state of the semaphore specified with DosTimerStart or
DosTimerAsync. The application should put the semaphores into a
known state.

2-271

DosUnlockSeg -
Unlock Segment

Purpose
DosUnlockSeg unlocks a discardable segment.

Calling Sequence
EXTRN DosUnlockSeg:FAR

PUSH WORD Selector ;Selector to unlock
CALL DosUnlockSeg

Where

Selector
is the selector of the segment to be unlocked.

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks
This function is valid only on segments which have been allocated
through DosAllocSeg with AllocFlags bit 2 (01008) set. Note that it is
an error to unlock a segment that is already fully unlocked.

2-272

DosWrite -
Synchronous Write to File

Purpose
DosWrite transfers the specified number of bytes from a buffer to the
specified file, synchronously with respect to the requesting process's
execution.

Calling Sequence
EXTRN DosWrite:FAR

PUSH WORD FileHandle ;File handle
PUSH@ OTHER BufferArea ;User buffer
PUSH WORD BufferLength ;Buffer length
PUSH@ WORD BytesWritten ;Bytes written (returned)
CALL DosWrite

Where

FileHandle
is the file handle obtained from DosOpen.

Buffer Address
is the output buffer.

BufferLength
is the number of bytes to write.

Bytes Written
is where the number of bytes written is returned.

Returns

IF AX= 0 then NO error

ELSE AX = error code

2-273

DosWrite -
Synchronous Write to File

Family API Considerations
Some options operate differently in the DOS mode than they do in
OS/2 mode. Therefore, the following restriction applies to DosWrite
when coding in the DOS mode:

Use only single-byte DosWrites to COMx in PC/DOS. The COM
device driver supplied with PC/DOS does not support multiple-byte
110.

Remarks
Upon return from this function, BytesWritten is the number of bytes
actually written. If BytesWritten is different from Bufferlength this
usually indicates insufficient disk space.

A Bufferlength value of 0 is not considered an error. No data transfer
will occur. There is no effect on the file or the file pointer.

Buffers that are multiples in size of the hardware's base physical unit
for data (the base physical unit is defined as the smallest block that
can be physically written to the device) which are written to the file on
these base boundaries, are written directly to the device. Other
buffer sizes force some of the 1/0 to go through an internal system
buffer and greatly reduce the efficiency of the 110 operation.

The file pointer is moved to the desired position by reading, writing,
and performing function DosChgFilePtr (Move File Read/Write
Pointer).

If the file is read-only, the write to the file is not performed.

2-274

DosWriteAsync -
Asynchronous Write to File

Purpose
DosWriteAsync transfers the specified number of bytes to a file from
a buffer, asynchronously with respect to the requesting process's
execution.

Calling Sequence
EXTRN DosWriteAsync:FAR

PUSH
PUSH@
PUSH@
PUSH@
PUSH
PUSH@
CALL

WORD FileHandle
DWORD RamSemaphore
WORD ReturnCode
OTHER Buff erArea
WORD Bufferlength
WORD BytesWritten
DosWriteAsync

Where

FlleHandle

; File handle
;RAM semaphore
;1/0 error RC (returned)
;User buffer
;Buffer length
;Bytes written (returned)

is the file handle obtained from DosOpen.

RamSeinaphore
is used by the system to signal the caller that the write operation
is complete.

ReturnCode
is where the return code is returned.

Buffer Area
is the output buffer.

BufferLength
is the number of bytes to be written.

Bytes Written
is where the number of bytes written is returned.

2-275

DosWriteAsync -
Asynchronous Write to File

Returns
AX=O

Note: When RamSemaphore is cleared and the read operation com
pletes, ReturnCode can be checked.

Remarks
When RamSemaphore is cleared, BytesWritten identifies the number
of bytes written. If BytesWritten is different from Bufferlength it
usually indicates insufficient disk space.

A Bufferlength value of O is not considered an error. No data transfer
will occur. There is no effect on the file or the file pointer.

RamSemaphore must be set by the application before the
DosWriteAsync call is made. The application issues the following
sequence:

1. DosSemSet
2. DosWriteAsync
3. DosSemWait.

Note: The program must not modify the contents of BufferArea or
look at the values returned in ReturnCode or BytesWritten until after
RamSemaphore is cleared.

Buffers that are multiples in size of the hardware's base physical unit
for data (the base physical unit is defined as the smallest block that
can be physically written to the device) which are written to the file on
these base boundaries will be written directly to the device. Other
buffer sizes will force at least some of the 1/0 to go through an
internal system buffer (if the File State indicates that internal buffers
may be used) and reduce the efficiency of the 110 operation.

The file read/write pointer can be moved to the desired position by
reading, writing, or performing function DosChgFilePtr (Change File
Read/Write Pointer).

2-276

DosWriteAsync -
Asynchronous Write to File

The value of the file read/write pointer is updated by the File Level
Request Router before the 1/0 request is queued to the device driver.

If the file is read-only, the write to the file is not performed.

2-277

DosWriteQueue
Write to Queue

Purpose
DosWriteQueue adds an element to a queue.

Calling Sequence
EXTRN DosWriteQueue:FAR

PUSH
PUSH
PUSH
PUSH@
PUSH
CALL

WORD QueueHandle
WORD Request
WORD DataLength
OTHER DataBuffer
WORD ElemPriority
DosWriteQueue

Where

QueueHand/e

;Handle of queue to send to
;Request identification data
;Length of element being added
;Element being added
;Priority of element being added

is the handle of the queue to write to.

Request
is a value to be passed with the queue element. This word is used
for event encoding by the specific application. The data in this
word is understood by the thread adding the element to the queue
and by the thread which receives the queue element. There is no
special meaning to this data and the operating system does not
alter the data.

Data Length
is the length of the data being sent to the queue.

Data Buffer
is the buffer where the data, which is to be placed in the queue, is
located.

ElemPriority
is the priority of the element being added to the queue. If the pri
ority is specified as 15, the element is added to the top of the
queue, If the priority is specified as 0, the element is added as the
last element in the queue. Elements with the same priority are in
FIFO order. This parameter is valid for priority type queues only.

2-278

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks

DosWriteQueue -
Write to Queue

DosWriteQueue adds entries to a specified queue. If the owning
process closes a queue prior to this request being issued, the
QUEUE_DOES_NOT_EXIST, Invalid Queue Handle return code is
returned. If the owning process invokes a system semaphore when
DosReadQueue or DosPeekQueue are issued, other processes that
issue DosWriteQueue for the used system semaphore must first issue
DosOpenSem.

2-279

2-280

Chapter 3. OS/2 Keyboard Function Calls

This chapter reflects the Keyboard API interface only. For informa
tion regarding the keyboard IOCtl interface and keyboard monitor
refer to the OS/2 Technical Reference Volume 1.

3-1

KbdCharln -
Read Character, Scan Code

Purpose
KbdCharln returns a character data record from the keyboard.

Calling Sequence
EXTRN KbdCharln:FAR

PUSH@ OTHER CharData ;Buffer for data
;Indicate if wait
;Keyboard handle

PUSH WORD IOWait
PUSH WORD KbdHandle
CALL KbdCharln

Where

CharData

3-2

is a structure that contains the character data in the following
format:

Size
BYTE
BYTE
BYTE
BYTE
WORD
DWORD

Description
ASCII Character Code
Scan Code
Status
NLS Shift Status
Shift State
Time Stamp

ASCII Character Code
is derived from translation of the scan code received from
the keyboard.

Scan Code
is code received from the keyboard identifying the key
pressed. This scan code may have been modified during the
translation process.

Status
indicates the state of the character:

KbdCharln -
Read Character, Scan Code

Bit Values Function

Bit 7 = 0 Bit 6 = 0

Bit 7 = 0 Bit 6 = 1

Bit 7 = 1 Bit 6 = 0

Bit 7 = 1 Bit 6 = 1

Bit 5 = 1

Bit 4 to 1

Bit 0 = 1

NLS Shift Status
Reserved = 0.

Shift State

Description

undefined

final character, interim character
flag off

interim character

final character, interim character
flag on

On the spot conversion requested

reserved= 0

shift status returned without char-
acter

is the state of the shift keys. The states are defined as
follows:

High Byte
Bit# Meaning
15 SysReq Key Down
14 CapsLock Key Down
13 NumLock Key Down
12 ScrollLock Key Down
11 Right Alt Key Down
10 Right Ctrl Key Down
9 Left Alt Key Down
8 Left Ctrl Key Down

Low Byte
Bit# Meaning
7 Insert ON
6 CapsLock ON
5 NumLockON
4 Scro I I Lock ON
3 Either Alt Key Down

3-3

KbdCharln -
Read Character, Scan Code

2 Either Ctrl Key Down
1 Left Shift Key Down
0 Right Shift Key Down

Time Stamp
is the time stamp of the key stroke that occupies a double
word and is specified in milliseconds since IPL.

IOWait
indicates whether to wait if a character is not available.

If value= 0
the requestor will wait for a character if one is not available.

If value= 1
the requestor will get an immediate return if no character is
available.

KbdHandle
identifies either the default keyboard or the logical keyboard.

Returns

IF AX = O then NO error

ELSE AX = error code

Family API Considerations
Some options operate differently in the DOS mode than they do in the
OS/2 mode. Therefore, the following restrictions apply to KbdCharln
when coding in the DOS mode:

• Interim Character is not supported
• Status can be O or 40H
• KbdHandle is ignored.

Remarks
Extended ASCII codes return the first code as OOH or EOH in the char
acter field and the second code (extended code) in the scan code
field. Usually the extended ASCII code is the scan code of the
primary key that was pressed.

Note: On an enhanced keyboard, the secondary enter key returns the
normal character of ODh and a scan code of EOh.

3-4

KbdCharln -
Read Character, Scan Code

Double-byte character codes (DBCS) require two function calls to
obtain the entire code.

If shift report is set with KbdSetStatus, then the CharData Record
returned will reflect changed shift information only.

KbdCharln completes when the handle has access to the physical
keyboard (focus), or is equal to 0, and no other handle has the focus.

The ASCII Character and Scan Code field of the CharData Structure
are reserved and set to O when a shift state is received.

A returned character is indicated by the final character flag, (bit 6 of
the status byte), being set to 1. Bit 6 set to O indicates that no char
acter was returned.

In general, if a thread can not continue until a character is received, it
should use the KbdCharln function with the IOWait parameter set to
wait for a character if one is not available. A thread in the foreground
session that repeatedly polls the keyboard with KbdCharln (with no
wait), can prevent all regular priority class threads from executing. If
polling must be used and a minimal amount of other processing is
being performed, the thread should periodically yield the CPU by
issuing a DosSleep for an interval of at least 5 milliseconds

3-5

KbdClose ,'
Close a Logical Keyboard

Purpose
KbdClose ends the existing logical keyboard identified by the key
board handle.

Calling Sequence
EXTRN KbdClose:FAR

PUSH WORD KbdHandle ;Keyboard handle
CALL KbdClose

Where

KbdHandle
identifies either the default keyboard or the logical keyboard.

Returns

IF AX = O then NO error

ELSE AX = error code

Remarks
The close process results in a KbdFreeFocus and KbdFlushBuffer on
the handle. A KbdClose of a O handle has no effect on the default key
board.

3-6

Purpose

KbdDeRegister -
Deregister Keyboard Subsystem

KbdDeRegister deregisters a keyboard subsystem previously regis
tered within a session. Only the process that issued the KbdRegister
may issue KbdDeRegister.

Calling Sequence
EXTRN KbdDeRegister:FAR

CALL KbdDeRegister

Where
None

Returns

IF AX= O then NO error

ELSE AX = error code

Remarks
None

3.7

KbdFlushBuffer -
Flush key stroke Buffer

Purpose
KbdFlushBuffer clears the key stroke buffer.

Calling Sequence
EXTRN KbdFlushBuffer:FAR

PUSH WORD KbdHandle ;Keyboard handle
CALL KbdFlushBuffer

Where

KbdHandle
identifies either the default keyboard or the logical keyboard.

Returns

IF AX = O then NO error

ELSE AX = error code

Family API Considerations
Some options operate differently in the DOS mode than they do in the
OS/2 mode. Therefore, the following restriction applies to
KbdFlushBuffer when coding in the DOS mode:

• KbdHandle is ignored.

Remarks
KbdFlushBuffer completes when the handle has access to the phys
ical keyboard (focus), or is equal to O and no other handle has the
focus.

3-8

Purpose

KbdFreeFocus -
Free Keyboard Focus

KbdFreeFocus frees the logical to physical keyboard bond created by
KbdGetFocus.

Calling Sequence
EXTRN KbdFreeFocus:FAR

PUSH WORD KbdHandle
CALL KbdFreeFocus

Where

KbdHandle

;Keyboard handle

identifies either the default keyboard or the logical keyboard.

Returns

IF AX = O then NO error

ELSE AX = error code

Remarks
If other threads are waiting for this bond to end, then one of the
waiting threads will be allowed to complete it KbdGetFocus upon
completion of the KbdFreeFocus. If no threads are waiting for the a
bond, then the physical keyboard reverts to the default keyboard.

KbdFreeFocus may be replaced by issuing KbdRegister. Unlike other
keyboard sub-system functions, the replaced KbdFreeFocus will be
called only if there is an outstanding focus.

3-9

KbdGetCp -
Get Loaded Code Page IDs

Purpose
KbdGetCp allows a process to query the code page currently in use to
translate scan codes to ASCII characters.

Calling Sequence
EXTRN KbdGetCp:FAR

PUSH DWORD Reserved
PUSH@ WORD CodePageID
PUSH WORD KbdHandle
CALL KbdGetCp

Where

Reserved
is reserved and set to 0.

CodePagelD

;Reserved
; Code Page ID
;Keyboard handle

is located in the application's data area. The keyboard support
copies the current code page ID for a specified keyboard handle
into this word. The code page ID is equivalent to one of the code
page IDs specified in the CONFIG.SYS CODEPAGE =statement or
0000.

KbdHandle
identifies either the default keyboard or the logical keyboard.

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks
KbdGetCp completes when the handle has access to the physical key
board (focus), or is equal to O and no other handle has the focus.

3-10

KbdGetFocus -
Get Keyboard Focus

Purpose
KbdGetFocus binds the logical keyboard to the physical keyboard.

Calling Sequence
EXTRN KbdGetFocus:FAR

PUSH WORD IOWait
PUSH WORD KbdHandle
CALL KbdGetFocus

Where

IOWalt

;Indicate if wait
;Keyboard handle

indicates whether to wait if a character is not available.

Bit# Meaning
15-1 Reserved = O
O indicates whether caller wants to wait for the bond. If

value = 0, wait If value = 1, do not wait.

KbdHandle
identifies either the default keyboard or the logical keyboard.

Returns

IF AX= O then NO error

ELSE AX = error code

Remarks
The keyboard handle identifies which logical keyboard to bind to. If
the physical keyboard is not bound to a logical or default keyboard,
then the bind proceeds immediately. The logical keyboard, identified
by the handle, receives all further key strokes from the physical key
board. If the physical keyboard is already in use by a logical key
board, then the thread issuing KbdGetFocus waits until the bond can
be made. Waiting threads do not execute in any definable order.

3-11

KbdGetStalus··· ··
Get Keyboard Stat1.1s

Purpose
KbdGetStatus gets the current state of the keyboard.

Calling Sequence
EXTRN KbdGetStatus:FAR

PUSH@ OTHER Structure
PUSH WORD KbdHandle
Call KbdGetStatus

;Data structure
;Keyboard handle

Where

Structure
is a data structure that contains information used to set the Input
Mode, Echo, Shift, Interim Character flags and the TurnAround
character states to be assigned to the keyboard. The data struc
ture is defined as follows:

Word 0
is the length in bytes of the data structure including this
word. High Byte is reserved and equal to 0. Low Byte is
equal to 10.

Word 1

3-12

is a bit mask that represents functions whose state is to be
altered by the current KbdSetStatus call. The bit mask is
defined as follows:
Bit # Meaning
15-09 =Reserved, set to 0
08 = Shift Report ON
07 = length of turnaround character

0 = one byte, high byte only (ASCII)
1 =two bytes (extended ASCII) (mean
ingful only if bit 6 is on)

06 =modify TurnAround character
05 = modify Interim Character Flags
04 = modify Shift State
03 = ASCII mode ON
02 = Binary mode ON

KbdGetStatus -
Get Keyboard Status

01
00

=Echo OFF
=Echo ON

If both bits 0 and 1 are OFF, the Echo state of the system is
not altered. If both bits 2 and 3 are OFF, the BINARY/ASCII
state of the system is not altered. If both bits 0 and 1 are ON
or if both bits 2 and 3 are ON, the function will return an
error. Echo is ignored if BINARY mode is set.

Word 2
Define TurnAround Character

Character (ASCII, extended ASCII) defined as the Turn
around (Carriage Return) character. If the turnaround char
acter is just ASCII then it is defined in the low order byte.

Word 3
Interim Character Flags
High Byte = NLS Shift State
Low Byte = Status
07 =Interim Character Flag ON
06 = Reserved, set to O
05 = Program requested on-the-spot conversion
04-00 = Reserved, set to O

Word 4
The shift states are defined as follows:
High Byte
15 = SysReq Key Down
14 = CapsLock Key Down
13 = NumLock Key Down
12 = Scroll Lock Key Down
11 = Right Alt Key Down
10 = Right Ctrl Key Down
09 = Left Alt Key Down
08 = Left Ctrl Key Down
Low Byte
07 = Insert ON
06 = Capslock ON
05 = NumLock ON
04 = ScrollLock ON
03 = Either Alt Key Down
02 = Either Ctrl Key Down
01 = Left Shift Key Down

3-13

KbdGetStatus -
Get Keyboard Status

00 = Right Shift Key Down

KbdHandle
is the handle of the KBD resource. OS/2 requires this value
always be a reserved word of Os.

Returns

IF AX = O then NO error

ELSE AX = error code

Family API Considerations
Some options operate differently in the DOS mode than they do in the
OS/2 mode. Therefore, the following restrictions apply to
KbdGetStatus when coding in the DOS mode:

• Interim Character is not supported
• Turnaround character is not supported
• NLS Shift State will always be null
• KbdHandle is ignored.

Remarks

The initial state of the keyboard is established by the system at appli
cation load time. Some default states may be modified by the appli
cation through KbdSetStatus. KbdGetStatus will return only those
keyboard parameters initially set by KbdSetStatus. The returned
parameters are:

• Input Mode
• Interim Character Flags
• Shift State
• Echo State
• Turnaround Character

KbdGetStatus completes only when the handle has access to the
physical keyboard (focus) or the handle is O and no other handle has
the focus.

3-14

Purpose

KbdOpen -
Open a Logical Keyboard

KbdOpen creates a new logical keyboard.

Calling Sequence
EXTRN KbdOpen:FAR

PUSH@ WORD KbdHandle
CALL KbdOpen

Where

KbdHandle

;Keyboard handle

identifies either the default keyboard or the logical keyboard.

Returns

IF AX= O then NO error

ELSE AX = error code

Remarks
A keyboard handle is returned by KbdOpen identifying a new logical
keyboard. KbdOpen initializes the logical keyboard to the system
default CodePage.

3-15

KbdPeek -
Peek at.Character, Scan Code

Purpose
KbdPeek returns the character data record, if available, from the key
board without removing it from the buffer.

Calling Sequence
EXTRN KbdPeek:FAR

PUSH@ OTHER CharData
PUSH WORD KbdHandle
CALL KbdPeek

Where

CharData

;Buffer for data
;Keyboard handle

is a structure that contains the character data in the following
format:

Size
BYTE
BYTE
BYTE
BYTE
WORD
DWORD

Description
ASCII Character Code
Scan Code
Status
NLS Shift Status
Shift State
Time Stamp

ASCII Character Code
is an ASCII character derived from translation of the scan code
received from the keyboard.

Scan Code
is code received from the keyboard identifying the key pressed.
This scan may have been modified during the translation process.

Status
indicates the state of the character:

3-16

KbdPeek -
Peek at Character, Scan Code

Bit Values

Bit 7 = 0

Bit 7 = 0

Bit 7 = 1

Bit 7 = 1

Bit 5 = 1

Bit 4 to 1

Bit 0 = 1

NLS Shift Status
Reserved = 0.

Shift State

Function

Bit 6 = 0

Bit 6 = 1

Bit 6 = 0

Bit 6 = 1

Description

undefined

final character, interim character
flag off

interim character

final character, interim character
flag on

On the spot conversion requested

reserved= 0

shift status returned without char-
act er

is the state of the shift keys. The states are defined as follows:

Bit# Meaning
15 SysReq Key Down
14 CapsLock Key Down
13 NumLock Key Down
12 Scroll Lock Key Down
11 Right Alt Key Down
10 Right Ctrl Key Down
09 Left Alt Key Down
08 Left Ctrl Key Down
07 Insert ON
06 CapsLock ON
05 NumLock ON
04 ScrollLock ON
03 Either Alt Key Down
02 Either Ctrl Key Down
01 Left Shift Key Down
00 Right Shift Key Down

3-17

KbdPeek -
Peek at Character, Scan Code

Time Stamp
is the time stamp of the key stroke occupying a double word and
specified in milliseconds.

KbdHandle
identifies either the default keyboard or the logical keyboard.

Returns

IF AX= 0 then NO error

ELSE AX = error code

Family API Considerations
Some options operate differently in the DOS mode than they do in the
OS/2 mode. Therefore, the following restrictions apply to KbdPeek
when coding for the DOS mode:

• Interim character is not supported
• Status = 0 or 40H
• KbdHandle is ignored.

Remarks
Extended ASCII codes return the first code as ODh or EOH in the char
acter field and the second code (extended code) in the scan code
field. Usually the extended ASCII code is the scan code of the
primary key that was pressed.

Note: On an enhanced keyboard, the secondary enter key returns the
normal character of ODh and a scan code of EOh.

Double-byte character codes (DBCS) require two function calls to
obtain the entire code.

If shift report is set by KbdSetStatus then the CharData Record
returned reflects only the changed shift information.

The ASCII Character and Scan Code. field of the CharData Structure
are reserved and set to O when a shift state is received.

3-18

KbdPeek -
Peek at Character, Scan Code

A returned character is indicated by the final character flag, (bit 6 of
the status byte), being set to 1. Bit 6 set to O indicates that no char
acter was returned.

KbdPeek completes when the handle has access to the physical key
board (focus) or is equal to O and no other handle has the focus.

In general, if a thread can not continue until a character is received, it
should use the KbdCharln function with the IOWait parameter set to
wait for a character if one is not available. A thread in the foreground
session that repeatedly polls the keyboard with KbdPeek (with no
wait), can prevent all regular priority class threads from executing. If
polling must be used and a minimal amount of other processing is
being performed, the thread should periodically yield the CPU by
issuing a DosSleep for an interval of at least 5 milliseconds.

3-19

KbdRegist•r.~·
Register l(eyboard Subsyste111

Purpose
KbdRegister registers a keyboard subsystem within a session.

Calling Sequence
EXTRN KbdRegister:FAR

PUSH@ ASCIIZ ModuleName
PUSH@ ASCIIZ EntryPoint
PUSH DWORD FunctionMask
CALL KbdRegister

Where

Modu/eName

;Module name
;Entry point name
;Function mask

contains the dynamic link module name. Maximum length is 129
bytes (including ASCllZ terminator).

EntryPoint
contains the dynamic link entry point name of a routine which will
receive control when any of the registered functions are called.
Maximum length is 33 bytes (including ASCllZ terminator).

FunctionMask
is a bit mask where each bit identifies a keyboard function being
registered. The bits are defined as follows:

3-20

Bit# Function
31-14 Reserved= O
13 KbdSetCustXt
12 KbdXlate
11 KbdSetCp
10 KbdGetCp
9 KbdFreeFocus
8 KbdGetFocus
7 KbdClose
6 KbdOpen
5 KbdStringln
4 KbdSetStatus
3 KbdGetStatus
2 KbdFlushBuffer
1 KbdPeek
0 KbdCharln

Returns

IF AX = 0 then NO error

ELSE AX= error code

Remarks

KbdRegister -
Register Keyboard Subsystem

The Base Keyboard Subsystem is the keyboard subsystem default.
There can be only one KbdRegister call outstanding at a time without
an intervening KbdDeRegister. KbdDeRegister must be issued by the
same process that issued the KbdRegister.

When any registered function is called, control is routed to
EntryPoint. When this routine is entered, four additional values are
pushed onto the stack. The first is the index number (WORD) of the
routine being called. The second is a near pointer (WORD). The third
is the caller's OS register (WORD). The fourth is the return address
(DWORD) to the keyboard router. For example, if KbdFlushBuffer
were a registered function and if KbdFlushBuffer were called and
control routed to EntryPoint, the stack would appear as if the fol
lowing instruction sequence were executed:

3-21

KbdRegister -
Register Keyboard Subsystem

PUSH WORD KbdHandle
CALL FAR KbdFlushBuffer
PUSH WORD Index
CALL NEAR Entry point in Kbd router
PUSH OS
CALL FAR Dynamic link entry point

The index numbers that correspond to the registered functions are
listed below:

00 KbdCharln
01 KbdPeek
02 KbdFlushBuffer
03 KbdGetStatus
04 KbdSetStatus
05 KbdStringln
06 KbdOpen

07 KbdClose
08 KbdGetFocus
09 KbdFreeFocus
10 KbdGetCp
11 KbdSetCp
12 KbdXlate
13 KbdSetCustXt

When a registered function returns to the keyboard router, the con
tents of AX are interpreted as follows:

AX=O
no error. Do not invoke the corresponding Base Keyboard Sub
system. Return AX =Oto the caller.

AX= -1
invoke the corresponding Base Keyboard Subsystem. Return AX
=return code from the Base Keyboard Subsystem.

AX= error, (not 0 or -1)
do not invoke the corresponding Base Keyboard Subsystem.
Return AX = error to the caller.

Within a session, a KbdRegister call remains in effect until a
KbdDeRegister is issued or the session ends. KbdDeRegister must
be called by the same process that issued KbdRegister.

3-22

KbdSetCp -
Set the Code Page

Purpose
KbdSetCp allows the process to set the code page used to translate
key strokes received from the keyboard.

Calling Sequence
EXTRN KbdSetCp:FAR

PUSH WORD Reserved
PUSH WORD CodePageID
PUSH WORD KbdHandle
CALL KbdSetCp

Where

Reserved

;Reserved
;code page ID
;Keyboard handle

is a reserved word equal to 0.

CodePagelD
is a word in the application's data area. It represents a code page
id. The code page ID word must be equivalent to one of the code
page IDs specified on the CONFIG.SYS CODEPAGE= statement
or 0000. If the code page ID does not match one of the ids on the
CODEPAGE= statement, an error will result. The code page
word currently must have one of the following code page
identifiers:

Identifier
0000
0437
0850
0860
0863
0865

KbdHandle

Description
Resident code page
IBM PC US 0437
Multilingual
Portuguese
Canadian-French
Nordic

identifies either the default keyboard or the logical keyboard.

3-23

KbdSetCp -
Set the Code Page

Returns

IF AX = 0 then NO error

ELSE AX = error code

Remarks
The code page specified must be 0000 or have been specified on the
CONFIG.SYS CODEPAGE =statement. Value = 0000 indicates to use
the device driver's built in code page.

To clear key strokes translated with the previous code page, the
buffer is flushed when the code page switch completes.

KbdSetCp completes when the handle has access to the physical key
board (focus), or is equal to O and no other handle has the focus.

3-24

Purpose

KbdSetCustXt -
Set Custom code page

KbdSetCustXt installs on the specified handle the code page pointed
to in this call. This code page will affect only this handle.

Calling Sequence
EXTRN KbdSetCustXt:FAR

PUSH@ OTHER CodePageID
PUSH WORD KbdHandle
CALL KbdSetCustXt

Where

CodePagelD

;Translation Table
;Keyboard handle

is a translation table used to translate scan code to ASCII code for
a specified handle. The format of the code page is documented in
the Set Code Page IOCtl 50H. (Refer to Chapter 3 in this book for a
complete discussion of Set Code Page IOCtl 50H).

KbdHandle
identifies either the default keyboard or the logical keyboard.

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks
The code page must be maintained in the callers memory. No copy
of the code page is made by KbdSetCustXt.

Note: KbdSetCp reverses the action of KbdSetCustXt and sets the
handle equal to one of the system code pages. If memory is dynam
ically allocated by the caller for the code page and is freed before the
KbdSetCp is performed, KbdSetCp and future translations may fail.

KbdSetCustXt completes when the handle has access to the physical
keyboard (focus), or is equal to 0 and no other handle has the focus.

3-25

KbdSetFgnd -
Set Foreground Keyboard Priority

Purpose
KbdSetFgnd raises the priority of the foreground keyboard's thread.

Calling Sequence
EXTRN KbdSetFgnd:FAR

CALL KbdSetFgnd

Where
None

Returns

IF AX = 0 then NO error

ELSE AX = error code

Remarks

Note: KbdSetFgnd is used by a subsystem, not an application.

3-26

KbdSetStatus -
Set Keyboard Status

Purpose
KbdSetStatus sets the characteristics of the keyboard.

Calling Sequence
EXTRN KbdSetStatus:FAR

PUSH@ OTHER Structure
PUSH WORD KbdHandle
Call KbdSetStatus

Where

Structure

;Data structure
;Keyboard Handle

is a data structure that contains information to set the Input Mode,
Echo, Shift, Interim Character Flags and the TurnAround Char
acter States to be assigned to the keyboard. The data structure is
defined as follows:

WordO
is the length in bytes of the data structure including this word High
Byte is reserved and equal to 0. Low Byte is equal to 10.

Word1
is a bit mask that represents functions whose state is to be altered
by the current KbdSetStatus call. The bit mask is defined as
follows:

Bit # Meaning
15-09 =Reserved, set to O
08 = Shift Report ON
07 = length of turnaround character

O = one byte, high byte only (ASCII)
1 =two bytes (extended ASCII) (meaningful only
if bit six is on)

06 = TurnAround character is to be modified
05 =Interim Character Flags are to be modified
04 = Shift state is to be modified
03 = ASCII mode ON
02 =Binary mode ON

3-27

KbdSetStatus -
Set Keyboard Status

01
00

=Echo OFF
=Echo ON

If both bits 0 and 1 are OFF, the Echo state of the system is not
altered. If both bits 2 and 3 are OFF, the BINARY/ASCII state of
the system is not altered. If both bits 0 and 1 are ON or if both bits
2 and 3 are ON, the function will return an error. Echo is ignored if
BINARY mode is set.

Word2
Define TurnAround Character

Cha,racter (ASCII, extended ASCII) defined as the Turnaround
(Carriage Return) character. If the turnaround character is just
ASCII then it is defined in the low order byte.

Word3
Interim Character Flags

High Byte
Low Byte
07
06
05
04-00

Word4
Shift State

= NLS Shift State
=Status
=Interim Character Flag ON
= Reserved, set to O
=Program requested on-the-spot conversion
=Reserved, set to 0

The shift states are defined as follows:

15 = SysReq Key Down
14 = CapsLock Key Down
13 = NumLock Key Down
12 = Scro I I Lock Key Down
11 = Right Alt Key Down
10 = Right Ctrl Key Down
09 = Left Alt Key Down
08 = Left Ctrl Key Down
07 =Insert ON
06 = CapsLock ON
05 = NumLock ON
04 = Scro I I Lock ON
03 = Either Alt Key Down

3-28

KbdSetStatus -
Set Keyboard Status

02 = Either Ctrl Key Down
01 = Left Shift Key Down
00 = Right Shift Key Down

KbdHandle
identifies either the default keyboard or the logical keyboard.

Returns

IF AX = 0 then NO error

ELSE AX = error code

Family API Considerations
Some options operate differently in the DOS mode than they do in the
OS/2 mode. Therefore, the following restrictions apply to
KbdSetStatus when coding in the DOS mode:

• RAW Mode, and ECHO ON is not supported and will return an
error if requested

• KbdHandle is ignored
• Interim character is not supported
• Turnaround character is not supported.

Remarks
KbdSetStatus completes when the handle has access to the physical
keyboard (focus), or is equal to 0 and no other handle has the focus.

Note: Shift report is not valid in ASCII mode.

When turning off shift report the application must realize that there
may be remaining shift report CharDataRecords to be read. If the
application does not want to process these it should do a
KbdFlushBuffer after turning off the shift report function.

3-29

KbdStringln -
Read Character String

Purpose
KbdStringln reads a character string (character codes only) from the
keyboard.

Calling Sequence
EXTRN KbdStringln:FAR

PUSH@
PUSH@
PUSH
PUSH
CALL

OTHER CharBuffer
OTHER Length
WORD IOWait
WORD KbdHandle
KbdStringln

Where

CharBuffer

;Char string buffer
;Length table
;Indicate if wait for char
;Keyboard handle

is the buffer for the character string.

Length
is the length of the character string buffer. On entry Length is the
maximum number of bytes in the buffer. The maximum Length
can be specified is 255 bytes.

Length is defined by the following structure:

Size
WORD
WORD

Description
Input Buffer Length
Received Input Length

Note: Template processing has meaning only in the ASCII mode
of operation.

IOWait
indicates whether to wait if a character is not available.

0 =Wait

3-30

In BINARY input mode, the requestor waits until CharBuffer is
full. In ASCII input mode, the requestor waits until a carriage
return is struck.

1 =No Walt

KbdStringln -
Read Character String

The requestor gets an immediate return if no characters are
available. If characters are available, KbdStringln returns
immediately with as many characters as are available (up to
the maximum). No Wait is not supported for ASCII input mode.

KbdHandle
identifies either the default keyboard or the logical keyboard.

Returns

IF AX= 0 then NO error

ELSE AX = error code

Family API Considerations
Some options operate differently in the DOS mode than they do in the
OS/2 mode. Therefore, the following restrictions apply to KbdStringln
when coding in the DOS mode:

• KbdHandle is ignored.
• ECHO state must always be set ON.

See also "DosRead - Read from File" on page 2-191 for the differ
ences between coding in OS/2 mode and DOS mode when reading
from a handle opened to the device "CON."

Remarks
The character strings may be optionally echoed on the display if echo
mode is set. When echo is on each character is echoed as it is read
from the keyboard. Echo mode and BINARY mode are mutually
exclusive. Reference KbdSetStatus and KbdGetStatus for more infor
mation.

In ASCII mode, 2-byte character codes only return in complete form.
An extended ASCII code is returned in a 2-byte string. The first byte
is ODh or EOH and the next byte is an extended code.

In input mode (BINARY, ASCII), The following returns can be set and
retrieved via KbdSetStatus and KbdGetStatus:

3-31

KbdStringln -
Read Character String

Turnaround Character
Echo Mode
Interim Character Flag
Shift State

The default input mode is ASCII.

The received input length is also used by the KbdStringln line edit
functions for re-displaying and entering a caller specified string. On
the next KbdStringln call the received input length indicates the
length of the input buffer that may be recalled by the user using the
line editing keys. A value of 0 inhibits the line editing function for the
current KbdStringln request.

KbdStringln completes when the handle has access to the physical
keyboard (focus), or is equal to 0 and no other handle has the focus.

3-32

KbdSynch -
Synchronize Keyboard Access

Purpose
KbdSynch synchronizes access for a keyboard subsystem to the key
board device driver.

Calling Sequence
EXTRN KbdSynch:FAR

PUSH WORD IOWait
CALL KbdSynch

Where

IOWait

;Indicate if wait

indicates whether to wait if a character is not available.

Bit # Meaning
15-01 Reserved = 0
O Indicates whether requestor waits for access to the

device driver. If bit = 1, wait, if bit = 0, do not wait.

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks
KbdSynch requests an exclusive system semaphore. See
"DosCloseSem - Close System Semaphore" on page 2-19 for
more information regarding system semaphores. This semaphore
request clears when the subsystem returns to the keyboard router.
KbdSynch blocks all other threads within a session until the
semaphore clears (returns from the subsystem to the router). To
ensure proper synchronization, KbdSynch should be issued by a key
board subsystem if it intends to issue DosDevlOCtl or access dynam
ically modifiable per-session shared data. KbdSynch will not protect
globally shared data from threads in other sessions.

3-33

KbdXlate -
Translate Scan Code

Purpose
KbdXlate translates scan code and shift states into ASCII code.

Calling Sequence
EXTRN KbdXlate:FAR

PUSH@ OTHER XlateRecord ;Translation Record
PUSH WORD KbdHandle ;Keyboard handle
CALL KbdXlate

Where

XlateRecord
is a structure that contains the translation record in the following
format:

Function Value

CharData as defined in KbdCharln
Record

KbdDDFlags as defined for Monitor packets

Xlate Flags defined below

Xlate State 1 defined below

Xlate State 2 defined below

Xlate Flags

High Byte
Bits 8-15, Reserved = O

Low Byte
Bits 1-7, Reserved= 0
Bit 0 =Translation complete

3-34

10
BYTES

WORD

WORD

WORD

WORD

KbdXlate -
Translate Scan Code

Xlate State 1 and Xlate State 2
identifies the state of translation across successive calls. Initially
these words should be 0. They should be reset to O to start a new
translation.

Note: It may take several calls to this IOCtl to complete a char
acter. These field should not be revised unless fresh start to
translation is desired.

KbdHandle
identifies either the default keyboard or the logical keyboard.

Returns

IF AX = 0 then NO error

ELSE AX = error code

Remarks
The desired shift state to use for translation is located in the
CharDataRecord.

KbdXlate completes when the handle has access to the physical key
board (focus), or is equal to O and no other handle has the focus.

Note: It may take several calls to complete a translation due to
accent key combinations, etc.

3.35

3-36

Chapter 4. OS/2 Mouse Function Calls

For information regarding mouse device drivers, mouse pointer draw
device, mouse installation and mouse IOCtls, refer to the OS/2 Tech
nical Reference, Volume 1

4-1

M~uCl
1

o•e ·· ~
Close Mouse· Device

Purpose
MouClose closes the mouse device for the current session.

Calling Sequence
EXTRN MouClose:FAR

PUSH WORD DeviceHandle ;Mouse device handle
CALL MouClose

Where

DeviceHandle
is the handle of the mouse device obtained from a previous
MouOpen.

Returns

IF AX = O then NO error

ELSE AX = error code

Remarks
MouClose closes the mouse device for the current session and
removes the mouse device driver handle from the list of valid open
mouse device handles.

4-2

MouDeRegister -
Deregister a Subsystem

Purpose
MouDeRegister deregisters a mouse subsystem previously registered
within a session.

Calling Sequence
EXTRN MouDeRegister:FAR

CALL MouDeRegister

Where
No parameters are passed.

Returns

IF AX = 0 then NO error

ELSE AX = error code

Remarks

MouDeRegister causes mouse calls for the session to revert to the
Base Mouse Subsystem

Processes issuing MouDeRegister calls must conform to the following
rules:

• The process which issued the MouRegister must release the
session (by a MouDeRegister), from the registered subsystem
before another PIO may issue MouRegister.

• The process which issued the MouRegister is the only process
which may issue MouDeRegister against the currently registered
subsystem.

• Once the owning process has released the subsystem with a
MouDeRegister, any other process in the session may issue a
MouRegister and therefore modify the mouse support for the
entire session.

4-3

MouDrawPtr -
Mouse Draw Pointer

Purpose
MouDrawPtr allows a process to notify the mouse device driver that
an area previously restricted to the pointer image is now available to
the mouse device driver.

Calling Sequence
EXTRN MouDrawPtr:FAR

PUSH WORD DeviceHandle ;Mouse device handle
CALL MouDrawPtr

Where

DeviceHandle
is the handle of the mouse device obtained from a previous
MouOpen.

Returns

IF AX = O then NO error

ELSE AX = error code

Remarks
The collision area (the pointer image restricted area) is established
by MouOpen and by MouRemovePtr. MouDrawPtr nullifies the colli
sion area. If there was no collision area at the time the MouDrawPtr
was called, the MouDrawPtr is a null operation.

Immediately after MouOpen is issued, the collision area is defined as
the size of the display. A MouDrawPtr can be issued to begin pointer
drawing after the MouOpen.

4-4

MouFlushQue -
Flush Mouse Queue

Purpose
MouFlushQue directs the mouse driver to flush (empty) the mouse
event queue for the session.

Calling Sequence
EXTRN MouFlushQue:FAR

PUSH WORD DeviceHandle ;Mouse device handle
CALL MouFlushQue

Where

DeviceHandle
is the handle of the mouse device obtained from a previous
MouOpen.

Returns

IF AX= O then NO error

ELSE AX = error code

Remarks
MouFlushQue is implemented via the Generic IOCtl, Category OBH,
option 01 H "flush input buffer" call.

4-5

MouGetDevStatus -
Get.Mouse Device Status

Purpose
Returns status flags for the mouse device driver currently installed.

Calling Sequence
EXTRN MouGetDevStatus:FAR

PUSH@ WORD DeviceStatus ;Current status flags
PUSH WORD DeviceHandle ;Mouse device handle
CALL MouGetDevStatus

Where

DevlceStatus
is where the current status flag settings are returned to the appli
cation for the currently installed mouse device driver.

The return value is a 2-byte set of bit flags.

High Byte:

Bit # Meaning
07-02 -Reserved= 0
01 -set if mouse data returned in mickeys, not display

units
00 -set if the interrupt level pointer draw routine is not

called

Low Byte:

Bit # Meaning
07-04 -Reserved = O
03 -set if pointer draw routine disabled by unsupported

mode
02 -set if flush in progress
01 -set if block read in progress
00 -set if event queue busy with 110

DeviceHandle

4-6

is the handle of the mouse device obtained from a previous
MouOpen.

Returns

IF AX = 0 then NO error

ELSE AX = error code

Remarks
None

MouGetDevStatus -
Get Mouse Device Status

4-7

MouG-t~,,,~,t .. a'ik''~°'~'
Get.··Mouse:Event;,l\'la•k~. ·

Purpose
MouGetEventMask returns the current value of the mouse event
queue mask.

Calling Sequence
EXTRN MouGetEventMask:FAR

PUSH@ WORD EventMask ;Event Mask word
;Mouse device handle PUSH WORD DeviceHandle

CALL MouGetEventMask

Where

EventMask
is where the current mouse device drivers event mask is returned
to the caller by the mouse device driver.

The EventMask is set by MouSetEventMask, and has the following
definition:

Bit No.
07-15
06
05

04
03

02
01

00

Meaning
- Reserved = 0
- set to receive button 3 press/release events
- set to receive button 3 press/release events, with
mouse motion
- set to receive button 2 press/release events
- set to receive button 2 press/release events, with
mouse motion
- set to receive button 1 press/release events
- set to receive button 1 press/release events, with
mouse motion
- set to receive mouse motion events with no button
press/release events.

DeviceHandle

4-8

contains the handle of the mouse device obtained from a previous
MouOpen.

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks

MouGetEventMask -
Get Mouse Event Mask

Note: Buttons are logically numbered from left to right.

4-9

MouGetNumButtons -
Get Number of Mouse ·euttons

Purpose
MouGetNumButtons returns the number of buttons supported on the
mouse driver currently installed.

Calling Sequence
EXTRN MouGetNumButtons:FAR

PUSH@ WORD NumberOfButtons ;Number of mouse buttons
PUSH WORD DeviceHandle ;Mouse device handle
CALL MouGetNumButtons

Where

NumberOfButtons
is where the number of physical buttons on the mouse is returned.

DeviceHandle
contains the handle of the mouse device obtained from a previous
MouOpen.

Returns

IF AX= O then NO error

ELSE AX = error code

Remarks
The return values for the number of buttons supported are:

1 = One mouse button
2 = Two mouse buttons
3 =Three mouse buttons

4-10

Purpose

MouGetNumMickeys -
Get Number of Mouse Mickeys

MouGetNumMickeys returns the number of mickeys per centimeter
for the mouse driver currently installed.

Calling Sequence
EXTRN MouGetNumMickeys:FAR

PUSH@ WORD NumberOfMickeys ;Number mickeys/centimeter
PUSH WORD DeviceHandle ;Mouse device handle
CALL MouGetNumMickeys

Where

NumberOIMickeys
is where the number of mickeys (mouse movement units) per cen
timeter of screen height or width are returned by the mouse
support.

DeviceHandle
contains the handle of the mouse device obtained from a previous
MouOpen.

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks
The return value is dependent on the mouse and its current setting.

4-11

MouGetNumQueEI -
Get Event Queue Status

Purpose
MouGetNumQueEI returns the current status for the mouse device
driver event queue.

Calling Sequence
EXTRN MouGetNumQueEl:FAR

PUSH@ OTHER QueDataRecord ;Ptr to 2-word structure
PUSH WORD DeviceHandle ;Mouse device handle
CALL MouGetNumQueEl

Where

QueDataReco1d
is a structure in application storage where queue status is
returned. This structure receives 2 full word parameters as
follows:

Word O =
the current number of event queue elements. The number of
queue elements value is in the range of O <=value <=
MaxNumQueElements.

Word 1 =
the mouse configured MaxNumQueElements value.

DeviceHandle
contains the handle of the mouse device obtained from a previous
MouOpen.

Returns

IF AX= O then NO error

ELSE AX = error code

Remarks
The MaxNumQueElements returned by this function is established
during mouse device driver configuration. See DEVICE=MOUSExxx
in the IBM Operating System/2 User Reference.

4-12

Purpose

MouGetPtrPos -
Query Mouse Pointer Position

MouGetPtrPos queries the mouse driver to determine the current row
and column coordinate position of the mouse pointer shape.

Calling Sequence
EXTRN MouGetPtrPos:FAR

PUSH@ OTHER PtrPos
PUSH WORD DeviceHandle
CALL MouGetPtrPos

Where

PtrPos

;Double word structure
;Mouse device handle

is a structure in application storage where position information is
returned. The structure format of the returned position informa
tion is defined as follows:

• Word O =current pointer row coordinate screen position.

• Word 1 = current pointer column coordinate screen position.

Both parameters are in either pixel or character units, depending
on the mode of the display for that session.

Coordinate positions are relative to physical displacement from
the top left corner of the display screen.

DevlceHandle
contains the handle of the mouse device obtained from a previous
MouOpen.

Returns

IF AX = 0 then NO error

ELSE AX = error code

Remarks
None

4-13

MouGetPtrShape -
Get Pointer Shape

Purpose
MouGetPtrShape allows a process to get (copy) the pointer shape for
the session.

Calling Sequence
EXTRN MouGetPtrShape:FAR

PUSH@ OTHER PtrBuffer
PUSH@ OTHER PtrDefRec
PUSH WORD DeviceHandle
CALL MouGetPtrShape

Where

PtrBuffer

;Pointer shape buffer
;Pointer definition structure
;Mouse device handle

is an area in application storage where the pointer draw device
driver returns the pointer bit image.

PtrDefRec
is a structure in application storage where the application stores
the necessary data for the pointer draw device driver to build a
Row by Col image for each bit plane for the currently running
display mode.

The pointer definition record structure is described below:

Word O = Totlength
Word 1 =Col
Word 2 =Row
Word 3 = ColOffset
Word 4 = RowOffset

Totlength

4-14

contains the total length in bytes necessary for the pointer
draw device driver to build a Row by Column image for each
bit plane for the currently running display mode. The length of
the pointer buffer is supplied by the calling application. The
actual length of the pointer image is always returned in this
word. If the total length of the pointer buffer supplied by the
application is not large enough to hold the pointer image, an

Col

MouGetPtrShape -
Get Pointer Shape

error is returned. In this case, the caller can use the value
returned in Totlength to determine the buffer size needed.

Note: See "MouSetPtrShape - Set Mouse Pointer Shape"
on page 4-38 for the calculations necessary to determine the
size.

is a full word returned by pointer draw device driver:
For graphics modes:

it contains the pixel width (cols} of the mouse shape for the
session.

For text modes:
wi II be equal to 1.

Row
is a full word returned by the pointer draw device driver:
For graphics modes:

pixel height (row} of the mouse shape for the session. Must
be greater than or equal to 1.

For text modes:
row must be equal to 1.

Col Offset
is returned by the pointer draw device to indicate the relative
column pixel offset for the pointer image used for coordinate
tracking. This defines the column coordinate for the pointer
image hotspot. This value is a signed number that represents
character or pixel offset, depending on the display mode.

RowOffset
is returned by the pointer draw device to indicate the relative
row pixel offset for the pointer image used for coordinate
tracking. This defines the row coordinate for the pointer image
hotspot. This value is a signed number that represents char
acter or pixel offset, depending on the display mode.

Note: For text modes, row and column offset will equal 0.

DeviceHandle
contains the handle of the mouse device obtained from a previous
MouOpen.

4-15

MouGetPtrShape -
Get Pointer Shape

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks

The application passes a parameter list with the same meaning as
defined 1or MouSetPtrShape, to the mouse device driver. The mouse
device driver copies the parameters that describe the pointer shape
and attributes into the pointer definition control block pointed to by
the PtrDefRec parameter. The word 0 (buffer length = Totlength)
pointer definition record parameter field must contain the size in
bytes of the application buffer in which the device driver is to insert
the sessions pointer image. All other words in the parameter list are
returned to the application by MouGetPtrShape.

If the buffer size is insufficient, the Totlength field will contain the
actual size in bytes of the returned pointer image.

The pointer shape may be set by the application via MouSetPtrShape
or may be the default image provided by the installed Pointer Device
Driver.

Refer to the OS/2 Technical Reference Volume I for more information
concerning the Pointer Draw device driver.

4-16

MouGetScaleFact -
Get Mouse Scaling Factors

Purpose
MouGetScaleFact returns a pair of 1-word scaling factors for the
current mouse device.

Calling Sequence
EXTRN MouGetScaleFact:FAR

PUSH@ OTHER ScaleStruct
PUSH WORD DeviceHandle
CALL MouGetScaleFact

Where

ScaleStruct

;2-word structure
;Mouse device handle

is where the mouse device driver's current row and column coor
dinate scaling factors are returned to the caller by the mouse
device driver.

ScaleStruct is a control block structure that is written into by the
mouse support. The format of the ScaleStruct structure is:

Word O
=RowScale, the current row coordinate scaling factor.
Rowscale falls within the following limits:

1 <= return value<= (32k - 1)

Word 1
= ColScale, the current column coordinate scaling factor.
ColScale falls within the following limits:

1 <= return value<= (32k - 1)

See "MouSetScaleFact - Set Mouse Scaling Factor" on
page 4-42 for more information.

DevlceHandle
contains the handle of the mouse device obtained from a previous
MouOpen.

4-17

MouGetScaleFact -
Get Mouse Scaling Factors

Returns

IF AX= O then NO error

ELSE AX = error code

Remarks
None

4-18

Purpose

MoulnitReal -
Initialize DOS mode

MoulnitReal initializes the DOS mode mouse device driver.

Calling Sequence
EXTRN MoulnitReal:FAR

PUSH@ ASCIIZ DriverName
CALL MoulnitReal

Where

DriverName

;Pointer draw driver name

contains the name of the Mouse Pointer Draw Device Driver used
as the pointer image drawing routine for the DOS mode session.

The name of the device driver must be included in the
CONFIG.SYS file at system boot time. Applications that use the
default Pointer Draw Device Driver supplied by the system, must
push a double word of Oes in place of an address.

Currently the Shell uses the default image drawing routine sup
plied by the system and, consequently, places a double word of Os
in place of an address.

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks
MoulnitReal is issued by the Shell (System Session Manager) at shell
initialization time.

The DOS mode mouse API (INT 33H), in contrast to the OS/2 mode
Mouse API, does not contain an OPEN command. In addition, there
may be only one session for DOS mode and, therefore, only one DOS
mode mouse support.

4-19

MoulnitReal -
Initialize DOS mode

The default pointer draw routine for the DOS mode is located in the
screen pointer draw module used in the OS/2 mode. The OS/2 mode
mouse support knows the address of this screen pointer draw routine.
Establishing addressability to the screen pointer draw routine for the
DOS mode mouse driver must be done at run time. The entry point of
the screen pointer draw routine must be passed to the DOS mode
mouse device driver. MoulnitReal passes the address of the default
screen pointer draw routine to the DOS mode device driver at system
initialization time so it is transparent to applications.

4-20

MouOpen -
Open Mouse Device

Purpose
MouOpen opens the mouse device for the current session.

Calling Sequence
EXTRN MouOpen:FAR

PUSH@ ASCIIZ DriverName ;Pointer draw driver name
PUSH@ WORD DeviceHandle ;Mouse device handle
CALL MouOpen

Where

DrlverName
contains the name of the Mouse Pointer Draw Device Driver used
as the pointer image drawing routine for the session.

The name of the device driver must be included in the
CONFIG.SYS file at system start-up time. Applications that use
the default Pointer Draw Device Driver supplied by the system
must push a double word of Oes in place of an address.

Applications that use the default image drawing routine supplied
by the system must push a double word of Os in place of an
address.

DeviceHandle
is where the mouse support returns a 1 word value that repres
ents the mouse handle to the application.

Returns

IF AX= 0 then NO error

ELSE AX = error code

4-21

MouOpen -
Open Mouse Device

Remarks
MouOpen generates a new mouse device handle every time it is
called.

MouOpen initializes the Mouse functions to a known state. The appli
cation may have to issue additional mouse functions to establish the
environment it desires. For example, after the MouOpen, the colli
sion area is defined to be the size of the entire display. Therefore, to
get the pointer to be displayed, the application must issue a
MouDrawPtr to remove the collision area.

The initial state of the mouse is:

• Row/Col scale factors set to 16/8. (See "MouSetScaleFact -
Set Mouse Scaling Factor" on page 4-42.)

• all events reported. (See "MouSetEventMask - Set Mouse
Event Mask" on page 4-34.)

• empty event queue. (See "MouReadEventQue - Read Mouse
Event Queue" on page 4-23 and "MouGetNumQueEI - Get
Event Queue Status" on page 4-12.)

• all user settable Device Status bits reset. (Set to 0. See
"MouSetDevStatus - Set Mouse Device Status" on page 4-32.)

• pointer set to center of screen. (See "MouSetPtrPos - Set
Mouse Pointer Position" on page 4-36.)

• pointer shape set to the default for the pointer device driver cur
rently registered in the session. (See "MouSetPtrShape - Set
Mouse Pointer Shape" on page 4-38.)

• collision area equal to full screen. (See "MouDrawPtr - Mouse
Draw Pointer" on page 4-4 and "MouRemovePtr - Remove
Mouse Pointer" on page 4-30.)

4-22

MouReadEventQue -
Read Mouse Event Queue

Purpose
MouReadEventQue reads an event from the mouse device FIFO event
queue, and places it in a structure provided by the application.

Calling Sequence
EXTRN MouReadEventQue:FAR

PUSH@ OTHER Buff er
PUSH@ WORD ReadType
PUSH WORD DeviceHandle
CALL MouReadEventQue

Where

Buffer

;le byte Structure address
;Read type
;Mouse device handle

is a 10 byte structure in application storage where the FIFO event
record element from the mouse event queue for the currently
installed mouse device driver will be returned to the application.
The return data has the following format:

MouState WORD (see below)
EventTime DWORD (time since boot in milliseconds)
Row WORD (absolute/relative row position)
Col WORD (absolute/relative col position)

MouState
represents the state of the mouse at the time the event is
reported. This word is defined as follows:

Bit#
7-15 -
6 -
5 -
4 -
3 -
2 -
1 -
0 -

Meaning
Reserved= 0
set if, button 3 down
set if, mouse motion, button 3 down
set if, button 2 down
set if, mouse motion, button 2 down
set if, button 1 down
set if, mouse motion, button 1 down
set if, mouse motion, no buttons down

4-23

MouReadEventQue -
Read Mouse Event Queue

Read Type
indicates the action to take when MouReadEventQue is issued and
the mouse event queue is empty. If the mouse event queue is not
empty, this parameter is not examined by the mouse support. The
ReadType values follow:

O - No WAIT for data on empty queue
(return a NULL record)

1 - WAIT for data on empty queue

DeviceHandle
contains the handle of the mouse device obtained from a previous
MouOpen.

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks

The types of queued events are directly affected by the current value
of the Mouse EventMask. MouSetEventMask is used to indicate the
types of events desired, and MouGetEventMask is used to query the
current value of the mask. Refer to these functions for further expla
nation of the masking of events.

Recognition of the mouse transition depends on the use of MouState
returned in the event record. The application should focus on bit
transitions which occur in this word. It is important to properly set
the event mask with MouSetEventMask for reporting the state transi
tions.

MouState reports the state of the mouse which resulted from the
action which caused the event. The action can be pressing or
releasing a button, and/or moving the mouse. All status is given,
regardless of the EventMask which was used to determine whether or
not to report the event.

4-24

MouReadEventQue -
Read Mouse Event Queue

For example, assume the EventMask indicates that the application
wishes only button 1 event. The EventMask will have only bits 1 and
2 set in this case. Also assume the current state of the mouse is no
buttons down, and mouse is not moving. At this point, button 1 is
pressed causing an event; the status will show button 1 down (bit 2
set). Next the mouse is moved, thereby causing more events; status
will show bits 1 set. Finally, mouse is stopped and button 1 is
released. The event will show status with no bits set.

Next, button 2 is pressed. No event occurs. Mouse is then moved;
again, no event. Then, while mouse is still in motion, button 1 is
pressed; an event is generated with bits 1 and 3 set in the state word.
While mouse is still in motion, both buttons are released. Because
button 1 changes states, an event occurs. The state word will have
bit 0 set. Finally, mouse is stopped. No event occurs, again because
no button 1 transition has taken place.

4-25

MouRegister -
Register·a Subsystem

Purpose
MouRegister registers a mouse subsystem within a session.

Calling Sequence
EXTRN MouRegister:FAR

PUSH@ ASCIIZ ModuleName
PUSH@ ASCIIZ EntryName
PUSH DWORD Mask
CALL MouRegister

Where

ModuleName

;Module Name
;Entry Name
;Function Mask

contains the dynamic link module name. The maximum length is
129 bytes (including ASCllZ terminator).

EntryName
contains the dynamic link entry point name of a routine that
receives control when any of the registered functions are called.
The maximum length is 33 bytes (including ASCllZ terminator)

Mask
is a mask of bits, where each bit set to 1 identifies a Mouse func
tion being registered. The bit mask format is shown below:

Bit # Function Registered
31-21 -Reserved = O
20 -MouSetDevStatus
19 -MoulnitReal
18 -MoLiSetPtrPos
17 -MouGetPtrPos
16 -MouRemovePtr
15 -MouDrawPtr
14 -MouSetPtrShape
13 -MouGetPtrShape
12 -MouClose
11 -MouOpen
10 -Reserved

4-26

09 -Reserved
08 -MouSetEventMask
07 -MouSetScaleFact
06 -MouGetEventMask
05 -MouGetScaleFact
04 -MouReadEventQue
03 -MouGetNumQueEI
02 -MouGetDevStatus
01 -MouGetNum Mickeys
00 MouGetNumButtons

Returns

IF AX= O then NO error

ELSE AX = error code

Remarks

MouRegister -
Register a Subsystem

The Base Mouse Subsystem is the default mouse subsystem. There
can be only one MouRegister outstanding at a time without an inter
vening MouDeRegister. MouDeRegister must be issued by the same
process that issued MouRegister.

When any registered function is called, control is routed to
EntryName. When this routine is entered, four additional values are
pushed onto the stack. The first is the index number (WORD) of the
function being called. The second is a near pointer (WORD). The
third is the caller's DS register (WORD). The fourth is the return
address (DWORD) to the mouse router. For example, if
MouGetNumMickeys were called and control routed to EntryName,
the stack would appear as if the following instructions were executed:

PUSH@ WORD NumberOfMickeys
PUSH WORD DeviceHandle
CALL FAR MouGetNumMickeys
PUSH WORD Function Code
CALL NEAR entry point in Mouse Router
PUSH OS
CALL FAR EntryName

4-27

MouRegister -
Register a Subsystem

When a registered function returns to the Mouse Router, AX is inter
preted as follows:

AX=O
No error. Do not invoke the Base Mouse Subsystem routine.
Return AX = 0.

AX= -1
Invoke the Base Mouse Subsystem routine. Return AX= return
code from the Base Mouse Subsystem.

AX = error (not 0 or -1)
Do not invoke the Base Mouse Subsystem routine. Return AX=
error.

When the mouse API router receives a mouse call, it routes it to the
Base Mouse Subsystem unless an application or other mouse sub
system has previously issued MouRegister for that call. If the call
was registered, the subsystem is entered at the EntryName specified,
and provided with the applicable function code.

The registered function mask is used to determine whether a
requested function will be performed by the registered mouse sub
system or default to the Base Mouse Subsystem.

The following table shows the relationship of the mouse API calls and
the function code passed to either the Base Mouse Subsystem or a
registered mouse subsystem.

MOU API Call
MouGetNumButtons
MouGetNumMickeys
MouGetDevStatus
MouGetNumQueEI
MouReadEventQue
MouGetScaleFact
MouGetEventMask
MouSetScaleFact
MouSetEventMask
Reserved
Reserved
MouOpen

4-28

Function Code
00
01
02
03
04
05
06
07
08
09
OA
OB

MouClose
MouGetPtrShape
MouSetPtrShape
MouDrawPtr
MouRemovePtr
MouGetPtrPos
MouSetPtrPos
MoulnitReal
MouSetDevStatus

oc
OD
OE
OF
10
11
12
13
14

MouRegister -
Register a Subsystem

A registered mouse subsystem must leave the stack, on exit, in the
exact state it was received.

4-29

MouRemovePtr -
Remove Mouse Pointer

Purpose
MouRemovePtr allows a process to notify the mouse device driver
that the area defined by the passed parameters is for the exclusive
use of the application. This area is defined as the 'collision' area and
is not available to the mouse device driver when drawing pointer
images.

Calling Sequence
EXTRN MouRemovePtr:FAR

PUSH@ OTHER PtrArea
PUSH WORD DeviceHandle
CALL MouRemovePtr

Where

PtrArea

;Address of pointer data block
;Mouse device handle

is where the application provides a data structure to define the
collision area. This structure is as follows:

• UpLeftRow WORD Upper left row (pixels or chars) coordi
nates (word)

• UpLeftCol WORD Upper left col (pixels or chars) coordinates
(word)

• LowRightRow WORD Lower Right row (pixels or chars) coor
dinates (word)

• LowRightCol WORD Lower Right col (pixels or chars) coordi-
nates (word)

which the mouse device driver uses to define the collision area for
the session pointer shape.

Neither the upper left corner (UpLeftRow , UpLeftCol) nor the
lower right corner (LoRightRow, LoRighCol) of the collision area
coordinate pair may overrun the display. An error will result if
either of these coordinate pairs logically extends beyond the
screen boundaries.

Row and col values may be specified in either pixels or character
units as long as the orientation is preserved across all values in

4-30

MouRemovePtr -
Remove Mouse Pointer

the structure and the dimensional choice corresponds to the
current display mode.

DevlceHandle
contains the handle of the mouse device obtained from a previous
MouOpen.

Returns

IF AX= O then NO error

ELSE AX = error code

Remarks
The application passes data to the mouse device driver to inform the
mouse driver that the collision area described by the data is to be
exclusively under the control of the application. This collision area is
not to be modified by the mouse device driver. This causes the
mouse device driver to remove the mouse pointer image from the
screen if it is currently located within the collision area. The mouse
device driver will not draw the pointer image any time the image's
logical location lies within the collision area.

MouRemovePtr may be issued by any process in the session.
However, only one collision area is active at a time. Each
MouRemovePtr command has the effect of resetting the collision area
to the location and area specified by the current command. Previ
ously defined collision areas are replaced and no longer checked for.

If the logical pointer position is outside of the collision area specified
by the latest MouRemovePtr command, the pointer image will be
drawn.

The MouDrawPtr command effectively cancels the MouRemovePtr
command and allows the pointer to be drawn anywhere on the
screen, until a new MouRemovePtr command is issued.

4-31

, ~ . .,,. .,. ·,t ·';,, ,.,.,\,':\,<': ,,-·~=.··:~,·;_., i,~,; ' ·-_:. ··'

MouSetDevStatus:-:~\:~:-,'::,,'_-, , ,_ ,, :\, ;_, ..
Set Mouse Devic.,,.$1.tb;

Purpose
MouSetDevStatus sets the mouse device driver status flags for the
mouse device driver currently installed. The status flags are a 2 byte
set of bit flags.

Calling Sequence
EXTRN MouSetDevStatus:FAR

PUSH@ WORD DeviceStatus ;Status flags
PUSH WORD DeviceHandle ;Mouse device handle
CALL MouSetDevStatus

Where

DevlceStatus
is where the application places the desired status flag settings.

The passed parameter is a 2 byte set of flags. Only the high order
byte has any meaning.

High byte

Bit # Meaning
07-02 -Reserved= O
01 -set if, mouse device is to return data in mickeys
00 -set if, the interrupt level pointer draw routine is not to be

called at interrupt time

Low byte:

Bit # Meaning
07-00 -Reserved= O

DevlceHandle
contains the handle of the mouse device obtained from a previous
MouOpen.

4-32

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks

MouSetDevStatus -
Set Mouse Device Status

MouSetDevStatus is the complement to MouGetDevStatus. However,
not all status flags may be set with MouSetDevStatus. Only the flags
corresponding to the following functions may be modified:

• return data in mickeys

Normally, mouse data is returned to the application with the
absolute display mode coordinates of the pointer image position
on the display screen. By setting this status flag, mouse data will
be returned in relative mickeys, a wait of mouse movement.

• don't call pointer draw device

Normally, the interrupt level screen pointer draw routine is called
at interrupt time. The pointer draw routine projects the pointer
image on the screen and then returns to the mouse device driver.
By setting this status flag, the mouse device driver will not call
the pointer draw routine. The application must draw any required
pointer image on the screen.

4-33

MouSetl5ventMask -
Set Mouse Event Mask

Purpose
MouSetEventMask assigns a new event mask to the current mouse
device driver.

Calling Sequence
EXTRN MouSetEventMask:FAR

PUSH@ WORD EventMask
PUSH WORD DeviceHandle
CALL MouSetEventMask

Where

EventMask

;Mouse device event mask ptr
;Mouse device handle

indicates what mouse events are to be placed on the event queue.

The EventMask bit values are described below:

Bit # Meaning
07-15 - Reserved= O
06 - set to receive button 3 press/release events
05 - set to receive button 3 press/release events, with

mouse motion
04 - set to receive button 2 press/release events
03 - set to receive button 2 press/release events, with

mouse motion
02 - set to receive button 1 press/release events
01 - set to receive button 1 press/release events, with

mouse motion
00 - set to mouse motion events with no button

press/release events

DeviceHandle
contains the handle of the mouse device obtained from a previous
MouOpen.

4-34

Returns

IF AX= O then NO error

ELSE AX = error code

Remarks

MouSetEventMask -
Set Mouse Event Mask

Setting a bit in the event mask means that the associated event will
be reported on the mouse FIFO event queue. See
"MouReadEventQue - Read Mouse Event Queue" on page 4-23 for
examples of event mask use.

4-35

MouSetPtrPos -
Set Mouse Pointer Position

Purpose
MouSetPtrPos directs the mouse driver to set a new current row and
column coordinate position for the mouse pointer shape.

Calling Sequence
EXTRN MouSetPtrPos:FAR

PUSH@ OTHER PtrPos
PUSH WORD DeviceHandle
CALL MouSetPtrPos

Where

PtrPos
structure format follows:

Word 0 =

;Double word structure
;Mouse device handle

pointer row coordinate screen position.
Word 1 =

pointer column coordinate screen position.

Both parameters must be in pixel or character units, depending on
the mode setting of the display in the session.

Coordinate positions are relative to physical displacement from
the top left corner of the display screen.

DeviceHandle
contains the handle of the mouse device obtained from a previous
MouOpen.

Returns

IF AX= O then NO error

ELSE AX = error code

4-36

Remarks

MouSetPtrPos -
Set Mouse Pointer Position

The application must insure that the coordinate position specified
conforms to the current display mode orientation for the session.
Pixel values must be used for graphics modes and character values
for text modes.

This function has no effect on the display's current collision area defi
nition as specified by the MouDrawPtr call. If the mouse pointer
image is directed into a defined collision area, the pointer image will
not be drawn until either enough pointer movement has been gener
ated to locate the pointer image beyond the collision area or the colli
sion area is released by the MouDrawPtr call.

4-37

MousetPtrShape -
Set, Mouse Pointer Shape

Purpose
MouSetPtrShape allows a process to set the pointer shape and size
to be used as the mouse device driver pointer image for all applica
tions in a session.

Calling Sequence
EXTRN MouSetPtrShape:FAR

PUSH@ OTHER PtrBuffer
PUSH@ OTHER PtrDefRec
PUSH WORD DeviceHandle
CALL MouSetPtrShape

Where

PtrBuffer

;Pointer shape buffer
;Pointer definition record
;Mouse device handle

is where the application stores the bit image the mouse device
driver uses as the pointer shape for that session. The buffer con
sists of AND and XOR pointer masks in a format meaningful to the
Pointer Draw Device Driver.

For CGA compatible text modes (0, 1, 2, and 3) the following
describes the AND and XOR pointer mask bit definitions for each
character cell of the masks.

Bits
15 -
14-12 -
11 -
10-8 -
7-0 -

PtrDefRec

Meaning
Blinking
Background Color
Intensity
Foreground Color
Character

is a structure in application storage where the application stores
the necessary data for the pointer device driver to build an Row
by Column image for each bit plane for the currently running
display mode.

The pointer definition record structure is described below:

4-38

Word O
Word 1
Word 2
Word 3
Word4

= Totlength
=Col
=Row
= ColOffset
= RowOffset

MouSetPtrShape -
Set Mouse Pointer Shape

TotLength

Col

contains the total length in bytes of the data necessary for the
Mouse Pointer Draw Device Driver to build a Row by Column
image for each bit plane for the currently running display mode.

The following example illustrates how to compute the Totlength
for the system supplied Mouse Pointer Draw Device Driver:

Mono and Text -

Totlength = (height in characters) *
(width in characters) * 2 * 2

= 1 * 1 * 2 * 2
= 4

Note: as stated above, for text mode height and width must be 1,
so length is always 4.

Graphics -

Totlength = (height in pixels)*
(width in pixels)*(bits per pixel) * 2 I a.

Note: width-in-pixels must be a multiple of 8.

Modes 4 and 5 (320 x 200)

Totlength = (height) * (width) * 2 * 2 I a.

Mode 6 (640 x 200)

Totlength = (height) * (width) * 1 * 2 / 8.

for graphics modes: is a full-word that contains the pixel width
(columns) of the mouse shape for the session. This width must be
greater than or = to 1.

for text modes, column must= 1.

4-39

MouSetPtrShape -
Set Mouse Pointer Shape

Row
for graphics modes: is a full-word that contains the pixel height
(row) of the mouse shape for the session. Row must be greater
than or= to 1.

For Text modes, Row must= 1.

Co/Offset
is the relative column pixel offset for the pointer image which is
used for coordinate tracking. This defines the column coordinate
for the pointer image hotspot. This value is a signed number that
represents character or pixel offset, depending on the display
mode.

RowOffset
is the relative row pixel offset for the pointer image which is used
for coordinate tracking. This defines the row coordinate for the
pointer image hotspot. This value is a signed number that repres
ents pixel offset, depending on the display. Length calculations
produce byte boundary buffer sizes.

For other custom displays and for the extended modes of the EGA
attachment, it is possible to initializ~ the display to modes that
require multiple bit planes. In these cases, the area sized by the
Row and Col limits must be repeated for each bit plane supported
in that mode. Consequently, the calling process must supply
enough data to allow the mouse device driver to draw the pointer
shape on all currently supported bit planes in that session.

Note: For text modes, row and column offset must equal 0.

DevlceHandle
contains the handle of the mouse device obtained from a previous
MouOpen.

Returns

IF AX= O then NO error

ELSE AX = error code

4-40

MouSetPtrShape -
Set Mouse Pointer Shape

Remarks
An application passes a data image to the mouse device driver,
which the mouse driver applies to the screen whenever the logical
pointer position is not located in the application-defined collision
area. The application synchronizes use of the screen with the mouse
driver by way of MouRemovePtr and MouDrawPtr.

The pointer shape is dependent on the display device driver used to
support the display device. OS/2 supports text and graphics modes.
These modes are restricted to modes 0 through 7, depending on the
display device. Character modes (modes 0, 1, 2, 3, and 7} support the
pointer cursor only as a reverse block character. This reverse block
character has a character height and width = 1.

The pointer shape is mapped by the Pointer Draw Device Driver and
determined completely by the application. The height and width may
vary from 1 through the pixel size of the display screen. For
restrictions concerning the Pointer Draw Device Driver, see OS/2
Technical Reference, Volume 1.

Note: The current pointer shape in effect for the session may be
determined with "MouGetPtrShape - Get Pointer Shape" on
page 4-14.

4-41

IYlouSetScaleFact · --
Set Mouse Scaling Factor

Purpose
MouSetScaleFact assigns to the current mouse device driver a new
pair of 1-word scaling factors.

Calling Sequence
EXTRN MouSetScaleFact:FAR

PUSH@ OTHER ScaleStruct
PUSH WORD DeviceHandle
CALL MouSetScaleFact

Where

ScaleStruct

;2-word structure
;Mouse device handle

is where the mouse device driver's new row and column coordi
nate scaling factors are obtained by the mouse device driver.

ScaleStruct is a data structure supplied by the application. The
format of the ScaleStruct structure follows:

Word O = RowScale
the new row coordinate scaling factor. RowScale must conform
to the following limits:

1 <=value<= (32k-1)

Word 1 = ColScale
the new column coordinate scaling factor. ColScale must
conform to the following limits:

1 <=value<= (32k-1)

DeviceHandle
contains the handle of the mouse device obtained from a previous
MouOpen.

Returns

IF AX = 0 then NO error

ELSE AX = error code

4-42

Remarks

MouSetScaleFact -
Set Mouse Scaling Factor

MouSetScaleFact sets the mickey to pixel ratio for mouse motion.
The row scale and column scale ratios specify a number of mickeys
per 8 pixels. The default value for the row scale is 8 mickeys per 8
pixels. The default value for the column scale is 16 mickeys to 8
pixels.

The number of pixels moved, does not have to correspond 1 to 1 with
the number of mickeys the mouse moves. The scaling factor defines
a sensitivity for the mouse, which is a ratio of the number of mickeys
required to move the cursor 8 pixels on the screen. The sensitivity
determines at what rate the cursor moves on the screen.

4-43

MouSynch ·.·~

Get Synchronous Access

Purpose
MouSynch provides synchronous (serial) access for a mouse sub
system to the mouse device driver.

Calling Sequence
EXTRN MouSynch:FAR

PUSH WORD IOWait
CALL MouSynch

Where

IOWait

;Indicate wait/no wait

indicates whether to wait for access.

The flagword bits are defined as follows:

15-1 -
0 -

If bit 0 = 1

If bit 0 = 0

Returns

Description
reserved equal to O
indicates whether caller wants to wait if mouse
device is busy
requestor waits until mouse device driver is
free
control immediately returned to caller

IF AX= O then NO error

ELSE AX = error code

Remarks
MouSynch requests an exclusive system semaphore (See
"DosCloseSem - Close System Semaphore" on page 2-19). This
semaphore request clears when the subsystem returns to the Mouse
Router. MouSynch blocks all other threads within a session until the
semaphore clears (returns from the subsystem to the router). To
ensure proper synchronization, MouSynch should be issued by a
mouse subsystem if it intends to access dynamically modifiable

4-44

MouSynch -
Get Synchronous Access

per-session shared data or if it intends to issue a DosDevlOCtl.
MouSynch will not protect globally shared data from threads in other
sessions.

4-45

4-46

Chapter 5. OS/2 Video Function Calls

This chapter reflects the video API interface only. Each function call
reflects the most frequently occurring error codes only. For an exten
sive listing of all error codes, refer to the Appendix at the back of this
book.

For information regarding other functional characteristics of the video
API, refer to the IBM Operating System/2 Technical Reference,
Volume 1

5-1

VioDeRegister -
De Register Video Subsystem

Purpose
VioDeRegister deregisters a video subsystem previously registered
within a session. VioDeRegister must be issued by the same process
that issued the previous VioRegister. After VioDeRegister is issued,
subsequent video calls are processed by the Base Video Subsystem.

Calling Sequence
EXTRN VioDeRegister:FAR

CALL VioDeRegister

Where
none

Returns

IF AX= 0 then NO error code

ELSE AX = error code

Remarks
none

5-2

VioEndPopUp -
Deallocate Pop-Up Display Screen

Purpose
VioEndPopUp is issued by the application when it no longer requires
the temporary screen obtained through a previous VioPopUp call.

Calling Sequence
EXTRN VioEndPopUp:FAR

PUSH WORD VioHandle
CALL VioEndPopUp

Where

VioHandle
is a reserved word of Os.

Returns

IF AX= O then NO error

ELSE AX = error code

Remarks

;Vio device handle

When the application issues a VioEndPopUp call, all video calls are
directed to the application's normal video buffer.

5-3

VioGetAnsi• -
Get ANSI Status

Purpose
VioGetAnsi returns the current ANSI status On/Off state

Calling Sequence
EXTRN VioGetAnsi:FAR

PUSH@ WORD Indicator ;On/Off indicator (returned)
PUSH WORD VioHandle ;Vio handle
CALL VioGetAnsi

Where

Indicator
is where the current ANSI status is returned. A value of 1 indicates
ANSI is active, and a value of O indicates ANSI is not active.

VioHandle
is a reserved word of Os.

Returns

IF AX = 0 then NO error

ELSE AX = error code

Remarks
None

5-4

VioGetBuf -
Get Logical Video Buffer

Purpose
VioGetBuf returns the address of the logical video buffer (LVB).

Calling Sequence
EXTRN VioGetBuf:FAR

PUSH@ DWORD LVBPtr
PUSH@ WORD Length
PUSH WORD VioHandle
CALL VioGetBuf

Where

LVBPtr

;Points to LVB
;Length of buffer
;Vio handle

contains the selector and offset of the logical video buffer. Appli
cations should not assume the offset portion of this far address
will be 0.

Length
is the length of the returned buffer in bytes. The length is

Number of rows * Number of columns * 2

VioHandle
is a reserved word of Os.

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks
With VioGetBuf, an application can prepare a screen in the applica-

1 tion's own logical video buffer (LVB) offline. When the application is
in the foreground, the physical screen buffer is updated from the LVB
when VioShowBuf is issued. When the application runs in the back
ground, the physical screen buffer is updated when the application is
switched to the foreground.

5-5

VioGetBuf -
Get Logical Video Buffer

Once VioGetBuf is issued, all VioWrtXX calls issued while the applica
tion is running in the foreground are written to the physical display
buffer and LVB.

VioGetBuf is not supported in graphics modes.

Use VioGetMode to determine the dimensions of the buffer.

5-6

VioGetConfig -
Get Video Configuration

Purpose
VioGetConfig returns the video display configuration.

Calling Sequence
EXTRN VioGetConfig:FAR

PUSH WORD Reserved
PUSH@ OTHER ConfigData
PUSH WORD VioHandle
CALL VioGetConfig

Where

Reserved
is a word of Os.

ConflgData

;Reserved (must be 0)
;Configuration data
;Vio handle

is a structure where the display configuration is returned.

Size
WORD
WORD
WORD
DWORD

Length

Description
Length
Adapter type
Display type
Memory

is an input parameter to VioGetConfig. It specifies the
length of the data structure in bytes including itself. For
OS/2 the maximum size structure required is 10 bytes.

Adapter Type
is the display adapter type.
• 0 =reserved
• 1 = color graphics adapter
• 2 = enhanced graphics adapter
• 3 =VGA or IBM Personal System/2™ Display Adapter
• 4-6 = reserved
• 7 =IBM Personal System/2™ Display Adapter 8514/A

5-7

VioGetConfig -
Get Video Configuration

Display Type
is the display/monitor type.

• 00 =reserved
• 01 = color display
• 02 = enhanced color display
• 03 = IBM Personal System/2 Monochrome Display 8503
• 04 = IBM Personal System/2 Color Displays 8512 and

8513
• 05-08 =reserved
• 09 = IBM Personal System/2 Color Display 8514

Memory
is the amount of memory on the adapter in bytes. It is
returned as a 32-bit value.

VioHandle
is a reserved WORD of Os.

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks
The values returned for Adapter Type and Display Type specify the
configuration the Base Video Subsystem assumes is present. The
Base Video Subsystem determines this information by making
various tests, for example, testing the switch settings on the card.
This interface does not guarantee that the display corresponding to
the display type returned is actually present. There may be no
monitor attached to the adapter. Also, if the switch settings on the
card are set inappropriately, the Base Video Subsystem (BVS} may
assume that one display type is present when another is in its place.

5-8

VioGetCp -
Get Code Page

Purpose
VioGetCp allows a process to query the code page currently used to
display text data.

Calling Sequence
EXTRN VioGetCp:FAR

PUSH WORD Reserved
PUSH@ WORD CodePageID
PUSH WORD VioHandle
CALL VioGetCp

Where

Reserved
is a reserved word of Os.

CodePagelD

; Code page ID
;Video handle

is a word in the application's data area. The current video code
page is returned in this word.

VloHandle
is a reserved word of Os.

Returns

IF AX = 0 then NO error

ELSE AX = error code

Remarks
The display code page ID previously set by VioSetCp or inherited
from the requesting process is returned to the caller.

The code page tag returned will be the currently active code page. A
value of 0000 indicates that the code page in use is the ROM code
page provided by the hardware.

5-9

'~P<i~~,~-:~ . . 081.-c~rs~~-~,c>sition ::. ·
, ·: ... ··' ,.,, , , . ' <" , ,.,,,,· ..• ~ ' ,,, u ... , ,·,.: _,.,,:·. ,,, :: ,,,,,· • • .,.

Purpose
VioGetCurPos returns the cursor position.

Calling Sequence
EXTRN VioGetCurPos:FAR

PUSH@ WORD Row
PUSH@ WORD Column
PUSH WORD VioHandle
CALL VioGetCurPos

Where

Row

;Row return data
;Column return data
;Vio handle

is the current row position of the cursor where O is the top row.

Column
is the current column position of the cursor where O is the leftmost
column.

VioHandle
is a reserved word of Os.

Returns

IF AX= O then NO error

ELSE AX = error code

Remarks
None

5-10

VioGetCurType -
Get Cursor Type

Purpose
VioGetCurType returns the cursor type.

Calling Sequence
EXTRN VioGetCurType:FAR

PUSH@ OTHER CursorData
PUSH WORD VioHandle
CALL VioGetCurType

Where

CursorData

;Cursor characteristics
;Vio handle

is where characteristics of the cursor are returned.

Size
WORD
WORD
WORD
WORD

Description
Cursor start line
Cursor end line
Cursor width
Cursor attribute

CursorStartLine
is the horizontal scan line in the character cell which marks the
top line of the cursor. If the character cell has "n" scan lines, 0 is
the top scan line of the character cell and"n"-1 is the bottom scan
line.

CursorEndLine
is the horizontal scan line in the character cell which marks the
bottom line of the cursor. Scan lines within a character cell are
numbered as defined under CursorStartline.

Cursor Width
is the width of the cursor in columns. The maximum value sup
ported by the OS/2 Base Video Subsystem is 1. CursorWidth = 0,
specifies the default width (one column)

CursorAttrlb
is the attribute of the cursor.

• -1 =hidden

5-11

VioGetCurType -
Get Cursor Type

• Any other value is normal.

VioHandle
is a reserved word of Os.

Returns

IF AX= O then NO error

ELSE AX = error code

Family API Considerations
Some options operate differently in the DOS mode than they do in the
OS/2 mode. Therefore, the following restriction applies to
VioGetCurType when coding in the DOS mode:

VioGetCurType returns only two values for CursorAttrib; 0 =visible
cursor, and -1 = hidden cursor.

Remarks
None

5-12

VioGetfont -
Get Font

Purpose
VioGetFont returns either the font table of the size specified, or the
font currently in use.

Calling Sequence
EXTRN VioGetFont:FAR

PUSH@ OTHER RequestBlock ;Request block
PUSH WORD VioHandle ;Vio handle
CALL VioGetFont

Where

RequestBlock
is a data structure that contains the request. The content of the
structure varies depending upon the request type. The request
type is in the second word. The formats of the supported request
blocks are shown below. The symbols in the rightmost column
are defined as follows:

• I = input parameter
• 0 = output parameter

Get Current Font (EGA, VGA, or
IBM Personal System/2 Display Adapter

WORD Length of structure (in bytes including length I
itself)= 14

WORD Request type = 0, get current font I

WORD Pel columns in character cell 0

WORD Pel rows in character cell 0

DWORD A caller-supplied data area where the requested 110
font table is returned. If the specified address is
0, a system-supplied segment that contains the
requested font table is returned.

5-13

VioGetFont
Get Font

Get Current Font (EGA, VGA, or
IBM Personal System/2 Display Adapter

WORD Length in bytes of the caller-supplied data area
where the font table is returned.

Get ROM Font (CGA, EGA, VGA, or
or IBM Personal System/2 Display Adapter)

WORD Length of structure (in bytes including length
itself) = 14.

WORD Request type = 1, get ROM font.

WORD Pel columns in character cell

WORD Pel rows in character cell

DWORD a caller- supplied data area where the
requested font table is returned. If the speci-
fied address is 0, a system-supplied
segment that contains the requested font
table is returned.

WORD Length in bytes of the caller-supplied data
area where the font table is returned.

VioHandle
is a reserved word of Os.

Returns

IF AX= 0 then NO error

ELSE AX = error code

5-14

1/0

i

I

I

I

i/O

1/0

Remarks

VioGetf ont -
Get Font

For request type= one, return ROM font, the font size requested must
be supported by the display adapter installed. The 8x8, 8x14, 9x14,
8x16, or 9x16 character font may be requested for the VGA or IBM
Personal System/2 Display Adapters adapters. The 8x8, 8x14, or 9x14
font may be requested for the enhanced graphics adapter. The 8x8
font may be requested for the color graphics adapter.

For request type= one, return ROM font, the far address returned
will be a ROM pointer only for those fonts where the font table for the
full 256-character set is actually contained in ROM. Otherwise, the
far address returned will be a RAM pointer. Note that for 8x8 the font
table for the full 256-character set is returned. For 9x14 or 9x16 the
font table for the full 256-character set is also returned. Partial fonts
are not returned. The 9x14 and 9x16 fonts are derived from variations
of the 8x14 and 8x16 fonts, respectively, where the fonts for those
characters which are different are replaced.

For VioGetFont specifying request type= one, return ROM font, the
font returned is derived from the fonts contained in the system, EGA,
VGA, and IBM Personal System/2 Display Adapter BIOS data areas
as applicable. One exception is: for the EGA, VGA and IBM Personal
System/2 Display Adapter, if VioSetCp has been issued, the font of
the size requested from the active code page is returned.

5-15

VioGetMode -
Get Display Mode

Purpose
VioGetMode returns the mode of the display.

Calling Sequence
EXTRN VioGetMode:FAR

PUSH@ OTHER ModeData
PUSH WORD VioHandle
CALL VioGetMode

Where

ModeData

;Mode characteristics
;Vio handle

is the structure where mode characteristics are returned.

Size
WORD
BYTE
BYTE
WORD
WORD
WORD
WORD

Length

Description
Length
Type
Color
Text Columns
Text Rows
Horizontal Resolution
Vertical Resolution

is an input parameter to VioGetMode. Length specifies the length
of the data structure in bytes including length itself. The value
specified on input controls the amount of mode data returned.
The minimum structure size required is 3 bytes, and the maximum
structure size required is 12 bytes. Any value specified for Length
other than 3 must be an even number.

Type
is a bit mask of mode characteristics. The definitions of the bits
follows:

5-16

xxxxxxxb b = 0 monochrome compatible mode
b = 1 other

xxxxxxbx b = 0 text mode
b = 1 graphics mode

xxxxxbxx b = 0 enable color burst
b = 1 disable color burst

Color

VioGetMode -
Get Display Mode

is the number of colors defined as a power of 2. This is equivalent
to the number of color bits that define the color. For example:

• Color = 1 specifies 2 colors
• Color = 2 specifies 4 colors
• Color = 4 specifies 16 colors

Text Columns
are the number of text columns.

Text Rows
are the number of text rows.

Horizontal Resolution
is the number of pel columns.

Vertical Resolution
is the number of pel rows.

VioHandle
is a reserved word of Os.

Returns

IF AX= 0 then NO error

ELSE AX= error code

Remarks
Refer to "VioSetMode - Set Display Mode" on page 5-67 for exam
ples.

5-17

~~f'.'.i.Y'c> ' ,.
C,af Q:isp.Ja.r,:e~lf.err·· ·
» .. <~'-.·~;. ·' : . ., .··.···:·: ··'.'·, .. "'· ~. -.~-.= .,,. ··,·: ·. · .. ·.f.':·:·,:~'· .;·'>·'·~<·'" .. , ··,

Purpose
VioGetPhysBuf gets addressability to the physical display buffer.

Calling Sequence
EXTRN VioGetPhysBuf:FAR

PUSH@ OTHER Structure
PUSH WORD Reserved
CALL VioGetPhysBuf

Where

Structure

;Data structure
;Reserved (must be 0)

is a data structure that contains the physical display buffer
address and length on input and the selectors, used to address
the display buffer, on output. The data structure is defined as
follows:

Size Description
DWORD Buffer start address
DWORD Buffer length
OTHER Selector list

Buffer Start Address
is the physical display buffer specified as a 32-bit physical
address.

Buffer Length
is the 32-bit length of the physical display buffer.

Selector List
is where the selectors (each of word-length) used to address the
physical display buffer are returned. The first selector returned in
the list addresses the first 64K of the physical display buffer or
Buffer Length, whichever is smaller. If Buffer Length is greater
than 64K bytes, the second selector addresses the second 64K
bytes, and so on. The last selector returned in the list addresses
the remainder of the display buffer. The application is responsible .
for ensuring enough space is reserved for Selector List to accom
modate the specified Buffer Length.

5-18

Reserved
is a word of Os.

Returns

IF AX = O then NO error

ELSE AX = error code

Remarks

VioGetPhysBuf -
Get Physical Display Buffer

An application uses VioGetPhysBuf to get addressability to the phys
ical display buffer. The selector returned by VioGetPhysBuf may be
used only when an application program is executing in the fore
ground. When an application wants to access the physical display
buffer, the application must call VioScrLock. VioScrLock either waits
until the program is running in the foreground or returns a warning
when the program is running in the background. For more informa
tion refer to "VioScrLock - Lock Screen" on page 5-48 and
"VioScrUnLock - Unlock Screen" on page 5-58

The buffer range specified for the physical screen buffer must fall
between AOOOO and BFFFF inclusive. An application may issue
VioGetPhysBuf only when it is running in the foreground. An applica
tion may issue VioGetPhysBuf more than once.

5-19

VioGetState -
Get Video •State

Purpose
VioGetState returns the current settings of the palette registers, over
scan (border) color or blink/background intensity switch.

Calling Sequence
EXTRN VioGetState:FAR

PUSH@ OTHER RequestBlock ;Request block
PUSH WORD VioHandle ;Vio handle
CALL VioGetState

Where

RequestBlock
is a data structure that contains the request. The content of the
structure varies depending on the request type. The request type
is in the second word. The formats of the request blocks sup
ported are shown below. The symbols in the right column have
the following meanings:

• I = input parameter
• 0 = output parameter

Get Palette Registers (EGA, VGA, or
IBM Personal System/2 Display Adapter)

WORD Length of structure (in bytes including length I
itself) maximum length= 38.

WORD Request type = 0, Get palette registers I

WORD First palette register to return. Must be in range I
Oto 15. The palette registers are returned in
sequential order. The number of palette regis-
ters returned is based upon the length of the
structure.

5-20

VioGetState -
Get Video State

Get Palette Registers (EGA, VGA, or
IBM Personal System/2 Dlsplay Adapter)

1 or 1 WORD that contains the color value for each 0
more palette register returned.

Get Overseen (Border) Color (CGA, VGA, or
IBM Personal System/2 Display Adapter)

WORD Length of structure (in bytes including length I
itself)= 6

WORD Request type = 1, get overscan (border) color I

WORD Color value 0

Get Blink/Background Intensity Switch
(CGA, EGA, VGA, or
IBM Personal System/2 Display Adapter)

WORD Length of structure (in bytes including length I
itself)= 6

WORD Request type= 2, get blink/ background intensity I
switch

WORD Value = 0, blinking foreground colors enabled. 0
Value= 1, high intensity background colors
enabled.

VioHandle
is a reserved word of Os.

Returns

IF AX = 0 then NO error

ELSE AX = error code

5-21

VioGetState -
Get Video State

Remarks
None

5-22

VioModeUndo -
Restore Mode Undo

Purpose
VioModeUndo allows one thread within a process to cancel a
VioModeWait issued by another thread within the same process.

Calling Sequence
EXTRN VioModeUndo:FAR

PUSH WORD Ownerlndic
PUSH WORD· Killlndic
PUSH WORD Reserved
CALL VioModeUndo

Where

Ownerlndic

;Ownership indicator
;Tenninate indicator
;Reserved {must be 0)

indicates whether the thread issuing VioModeUndo wants owner
ship of VioModeWait to be reserved for its process.

• If Ownerlndic = 0, reserve ownership
• If Ownerlndic = 1, give up ownership.

Killlndic
indicates whether the thread {with the outstanding VioModeWait)
should be returned an error code or be terminated.

• If Killlndic = 0, return error code
• If Killlndic = 1, terminate thread.

Reserved
is a reserved word of Os.

Returns

IF AX = 0 then NO error

ELSE AX = error code

5-23

VioModeUndo -
Restore Mode Undo

Remarks
VioModeUndo may be issued only by a thread within the process
which owns VioModeWait. The thread issuing VioModeUndo can
either reserve ownership of the VioModeWait function for its process
or give up ownership. The thread whose VioModeWait is cancelled is
optionally terminated.

5-24

Purpose

VioModeWait -
Restore Mode Wait

VioModeWait allows a graphics mode application to be notified when
it must restore its video mode, state, and modified display adapter
registers. The return from this function call provides the notification.

Calling Sequence
EXTRN VioModeWait:FAR

PUSH WORD RequestType
PUSH@ WORD NotifyType
PUSH WORD Reserved
CALL VioModeWait

Where

Request Type

;Request type
;Notify type (returned)
;Reserved (must be 0)

indicates the event the application is waiting for. RequestType =
O indicates the application wants to be notified at the end of a
pop-up to restore its mode. RequestType = O is the only event
supported by VioModeWait.

Notify Type
specifies the operation to be performed by the application upon
return from VioModeWait. NotifyType = 0, indicating restore
mode, is the only type of notification returned.

Reserved
is a reserved word of Os.

Returns

IF AX= O then NO error

ELSE AX = error code

5-25

VioModeWait -
Restore Mode Wait

Remarks

A VioModeWait thread is notified to perform a restore at the com
pletion of an application or hard error pop-up. Refer to
"VioPopUp - Allocate a pop-up Display Screen" on page 5-28 for
further discussion. The VioModeWait thread of the session that was
originally interrupted for the pop-up is notified. The VioModeWait
thread must restore the video mode, state, and modified display
adapter registers and immediately re-issue VioModeWait. The
VioModeWait thread does not restore the physical display buffer.
OS/2 saves/restores the physical display buffer over a pop-up.

Only one process for a session can issue VioModeWait. The first
process that issues VioModeWait becomes the owner of this function.
(Refer to "VioModeUndo - Restore Mode Undo" on page 5-23.)

An application must issue VioModeWait only if it writes directly to the
registers on the display adapter. Otherwise, if VioModeWait is not
issued, OS/2 restores the physical display buffer, mode, and state at
the completion of a pop-up.

A graphics mode application (or a text mode application which writes
directly to the registers on the display adapter) must issue
VioSavRedrawWait. (Refer to "VioSavRedrawWait - Screen Save
Redraw Wait" on page 5-45.)

A VioModeWait thread should not issue any file system or loader DOS
calls (or calls to any dynamic link routines which issue these file
system or loader DOS calls). Otherwise, a system lockout will occur
in the following scenario:

1. One of the threads of a process running in the foreground causes
a hard error.

2. A hard error pop-up is displayed. At the completion of the
pop-up, a VioModeWait thread (in the same process which
caused the hard error) is notified to perform a restore.

3. The VioModeWait thread issues a file system or loader DOS call.

5-26

VioModeWait -
Restore Mode Wait

An application that contains a VioModeWait thread should be
designed to avoid any hard errors while the VioModeWait thread is
running. If hard errors occur, there is a potential for a system lockout
to occur.

5-27

VioPopUp -
Allocate a pop-up Display Screen

Purpose
VioPopUp is issued by an application process when it requires a tem
porary screen to display a momentary message to the user.

Calling Sequence
EXTRN VioPopUp:FAR

PUSH@ WORD Options ;Option Flags
;Vio handle PUSH WORD VioHandle

CALL VioPopUp

Where

Options
contain bit flags that indicate which of the various options avail
able to the application are being selected. The flags bits are
described below:

High byte= 0

Low byte=:

Bit Meaning
7-2 - Reserved = o
1 - O=non-transparent operation. The video mode is set to

text - mode 3, 3*, 3+, 7 or 7 +. The highest resolution
supported by the primary display adapter configured in
the system is selected. The screen is cleared, and the
cursor is positioned in the upper left corner of the display.

5-28

1 =transparent operation. If the video mode of the out
going foreground session is text (mode 2, 3, 7 or 1 of the*
or + variations of these modes), no mode change occurs.
The screen is not cleared, and the cursor remains in its
current position. If transparent operation is selected, and
if the video mode of the outgoing foreground session is
not text (or if the outgoing foreground session has a
VioSavRedrawWait thread), the pop-up request is refused.
A unique error code is returned in this case.

VioPopUp -
Allocate a pop-up Display Screen

OS/2 is responsible for saving and restoring the physical
display buffer of the previous foreground session around a
pop-up. This is true whether transparent or
non-transparent operation is selected.

0 - O=return with unique error code if pop-up is not imme
diately available and 1 =wait if pop-up is not immediately
available.

VioHandle
is a reserved word of Os.

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks
VioPopUp is normally issued by the application when it is running in
the background and wishes to immediately display a message to the
user without waiting to become the active foreground session.

When an application process issues VioPopUp, it should wait for the
return from the request. If the process allows any of its threads to
write to the screen before VioPopUp returns a successful return code,
the screen output may be directed to the application's normal video
buffer rather than to the pop-up screen. If the process allows any of
its threads to issue keyboard or mouse calls before VioPopUp returns
a successful return code, the input will be directed from the applica
tion's normal session. Once the process which issued VioPopUp
receives a successful return code, video and keyboard calls issued
by any of the threads in the pop-up process are directed to the pop-up
screen. This will continue until the process issues VioEndPopUp
phen.up. At that time video and keyboard calls resume being
directed to the application's normal video buffer.

There may be only one pop-up in existence at any one time. If a
process requests a pop-up and a pop-up already exists, the process
has the choice of waiting for the prior pop-up to complete or receiving
an immediate return with an error code. The error code will indicate

5-29

VioPopUp -
Allocate a pop-up Display Screen

that the operation failed due to an existing pop-up having captured
the screen.

Vio pop-ups provide a mechanism for a background application to
notify the operator of an abnormal event upon which the operator
must take some action. When considering the suitability of using
pop-ups in a particular situation, the possible disruptive effect of
pop-ups to the operator should be considered. If the operator were
interrupted frequently by pop-ups issued by background applications,
the operator would not be able to work effectively with the foreground
application.

While a video pop-up is in the foreground, the operator cannot use
the hot key to switch to another application or the shell. Before the
operator can switch another application or the shell to the fore
ground, the pop-up application must issue VioEndPopUp

While a video pop-up is in effect, all video calls from the previous
foreground session are blocked until the process that issued
VioPopUp issues VioEndPopUp

When VioPopUp is issued, only the process within the session that
issued VioPopUp is brought to the foreground. Assuming the session
was already the foreground session, any video calls issued by other
processes in that session are blocked until the process that issued
VioPopUp issues VioEndPopUp

DosExecPgm may not be issued by a process during a pop-up. The
following video calls are the only calls that may be issued by a
process that issued VioPopUp during the pop-up:

5-30

VioEndPopUp
VioGetConfig
VioGetCp
VioGetFont
VioGetAnsi
VioGetState
VioGetCurPos
VioGetCurType
VioGetMode
VioReadCharStr
VioReadCellStr
VioScrollRt
VioScrollUp

VioPopUp -
Allocate a pop-up Display Screen

VioScrollDn
VioScrolllf
VioSetCurPos
VioSetCurType
VioSetCp
VioSetFont
VioSetState
VioWrtNChar
VioWrtNAttr
VioWrtNCell
VioWrtCharStr
VioWrtCharStrAtt
VioWrtCel IStr
VioWrtTTY

Selectors to the physical display buffer, which the issuing process
obtained on a prior VioGetPhysBuf call, may not be used during the
pop-up.

When an application registers a replacement for VioPopUp within a
session, the registered routine is only invoked when that session is in
the foreground. If VioPopUp is issued when that session is in the
background, the OS/2 default routine is invoked. If the application's
session is using a keyboard or mouse monitor, the monitor will not
intercept data while the pop-up is active.

5-31

. VioPrtSc -
Print Screen

Purpose
VioPrtSc copies the screen to the printer.

Calling Sequence
EXTRN VioPrtSc:FAR

PUSH WORD VioHandle
CALL VioPrtSc

Where

VloHandle
is a reserved word of Os.

Returns

IF AX = 0 then NO error

ELSE AX = error code

Remarks

;Vio handle

VioPrtSc supports text modes 0 through 3, 7, and the + and * vari
ations of these modes. An Alternate Video Subsystem may want to
register a replacement for VioPrtSc. The Base Video Subsystem
does not support PrtSc in graphics modes.

VioPrtSc is reserved for use by the session manager. Application
programs may not issue VioPrtSc.

5-32

Purpose

VioPrtScToggle -
Toggle Print Screen

VioPrtScToggle is called by the Session Manager when the operator
presses Ctrl-PrtSc.

Calling Sequence
EXTRN VioPrtScToggle:FAR

PUSH WORD VioHandle
CALL VioPrtScToggle

Where

VioHandle
is a reserved word of Os.

Returns

IF AX = 0 then NO error

ELSE AX = error code

Remarks

;Vio handle

VioPrtScToggle toggles the Ctrl-PrtSc state of the foreground session.
When the Ctrl-PrtSc state is on, all VioWrtTTY calls from that session
are echoed to the print device.

VioPrtScToggle can only be called by the session manager. If an
application issues this call, it will receive an error code.

Three beeps are generated if a hard error is detected while writing to
the printer. When Ctrl-PrtSc is turned off, the operator may have to
press the Enter key to cause output spooled while Ctrl-PrtSc was
active to be printed.

5-33

'\t~~~~l·~··\··. . •...
... ··f:t'.~~·;C~.~~!A~~ .. :~~~·~ng

Purpose
VioReadCellStr reads a string of character-attribute pairs (or cells)
from the screen starting at the specified location.

Calling Sequence
EXTRN VioReadCellStr:FAR

PUSH@
PUSH@
PUSH
PUSH
PUSH
CALL

OTHER Cell Str
WORD Length
WORD Row
WORD Column
WORD VioHandle
VioReadCellStr

Where

Ce/IStr

;Cell string buffer
;Length of cell string buffer
;Starting row location
;Starting column location
;Video handle

is the buffer into which the cell string is read.

Length
is the length of the buffer in bytes. Length must take into account
that each character-attribute entry in the buffer is 2-bytes. If the
length of the buffer is not sufficient, the last entry will not be com
plete.

Row
is the starting row of the field to read where 0 is the top row.

Column
is the starting column of the field to read where O is the leftmost
column.

VioHandle
is a reserved word of Os.

Returns

IF AX = 0 then NO error

ELSE AX = error code

5-34

Remarks

VioReadCellStr -
Read Char/Attr String

If a string read comes to the end of the line and is not complete, the
string read continues at the beginning of the next line. If the read
comes to the end of the screen and is not complete, the read termi
nates and the length is set to the length of the buffer that was filled.

5-35

VioReadCharStr· -
Read Character String

Purpose
VioReadCharStr reads a character string from the display starting at
the specified location.

Calling Sequence
EXTRN VioReadCharStr:FAR

PUSH@
PUSH@
PUSH
PUSH
PUSH
CALL

OTHER CharStr
WORD Length
WORD Row
WORD Column
WORD VioHandle
VioReadCharStr

Where

CharStr

;Character buffer
;Length of buffer
;Starting row location
;Starting column location
;Video handle

is the buffer where the character string is read into.

Length
is the length of the buffer in bytes.

Row
is the starting row of the field to read where O is the top row.

Column
is the starting column of the field to read where O is the leftmost
column.

VioHandle
is a reserved word of Os.

Returns

IF AX= 0 then NO error

ELSE AX == error code

5-36

Remarks

VioReadCharStr -
Read Character String

If a string read comes to the end of the line and is not complete, then
the string read continues at the beginning of the next line. If the read
comes to the end of the screen and is not complete, the read termi
nates and the length is set to the number of characters read.

5-37

VioRegist•r ·-
Register Video.Subsystem

Purpose
VioRegister registers an Alternate Video Subsystem within a session.

Calling Sequence
EXTRN VioRegister:FAR

PUSH@
PUSH@
PUSH
PUSH
CALL

ASCIIZ ModuleName
ASCIIZ EntryPoint
DWORD FunctionMaskl
DWORD FunctionMask2
VioRegister

Where

Modu/eName

;Module name
;Entry point name
;Function mask 1
;Function mask 2

contains the dynamic link module name. The maximum length is
129 bytes including the terminating byte of 0.

EntryPoint
contains the dynamic link entry point name of a routine that
receives control when any of the registered functions are called.
The maximum length is 33 bytes including the terminating byte of
0.

FunctionMask1
is a bit mask where each bit identifies a video function. The bit
definitions are shown below. The first word pushed onto the stack
contains the high order 16 bits of the function mask, and the
second word contains the low order 16 bits.

5-38

VioRegister -
Register Video Subsystem

Bit Registered Function
31 VioPrtScToggle
30 ~oEndPopUp

29 VioPopUp
28 VioSavRedrawUndo
27 VioSavRedrawWait
26 VioScrUnlock
25 VioScrlock
24 VioPrtSc
23 VioGetAnsi
22 VioSetAnsi
21 VioScrollRt
20 VioScrolllf
19 VioScrollDn
18 VioScrollUp
17 VioWrtCellStr
16 VioWrtCharStrAtt
15 VioWrtCharStr
14 VioWrtTTY
13 VioWrtNCell
12 VioWrtNAttr
11 VioWrtNChar
10 VioReadCellStr
09 VioReadCharStr
08 VioShowBuf
07 VioSetMode
06 VioSetCurType
05 VioSetCurPos
04 VioGetPhysBuf
03 VioGetBuf
02 VioGetMode
01 VioGetCurType
00 VioGetCurPos

FunctionMask2
is a bit mask where each bit identifies a video function. The bit
mask has the format shown below. The first word pushed onto the
stack contains the high order 16 bits of the function mask, and the
second word contains the low order 16 bits. Unused bits are
reserved and must be 0.

5-39

VioRegister -
Register Video Subsystem

Bit Registered Function
31-09 Reserved = 0
08 VioSetState
07 VioGetState
06 VioSetFont
05 VioGetCp
04 VioSetCp
03 VioGetConfig
02 VioGetFont
01 VioModeUndo
00 VioModeWait

Returns

IF AX = 0 then NO error

ELSE AX = error code

Remarks
An Alternate Video Subsystem must register which video calls it
handles. The default OS/2 video subsystem is the Base Video Sub
system.

When any of the registered functions are called, control is routed to
EntryPoint. When this routine is entered, four additional values (5
words) are pushed onto the stack.

The first value is the index number (WORD) of the routine being
called. The second value is a near pointer (WORD). The third value
is the caller's DS register (WORD). The fourth value is the return
address (DWORD) to the VIO router.

For example, if VioSetCurPos were a registered function, the stack
would appear as if the following instruction sequence were executed
if VioSetCurPos were called and control routed to EntryPoint:

5-40

VioRegister -
Register Video Subsystem

PUSH WORD Row
PUSH WORD Column
PUSH WORD VioHandle
CALL FAR VioSetCurPos
PUSH WORD Index
CALL NEAR Entry point in Vio router
PUSH WORD Caller's OS
CALL FAR Dynamic link entry point

The index numbers that correspond to the registered functions are
listed below:

O VioGetPhysBuf 21 VioScrollRt
1 VioGetBuf 22 VioSetAnsi
2 VioShowBuf 23 VioGetAnsi
3 VioGetCurPos 24 VioPrtSc
4 VioGetCurType 25 VioScrLock
5 VioGetMode 26 VioScrUnLock
6 VioSetCurPos 27 VioSavRedrawWait
7 VioSetCurType 28 VioSavRedrawUndo
8 VioSetMode 29 VioPopUp
9 VioReadCharStr 30 VioEndPopUp
1 O VioReadCel IStr 31 VioPrtScToggle
11 VioWrtNChar 32 VioModeWait
12 VioWrtNAttr 33 VioModeUndo
13 VioWrtNCell 34 VioGetFont
14 VioWrtCharStr 35 VioGetConfig
15 VioWrtCharStrAtt 36 VioSetCp
16 VioWrtCellStr 37 VioGetCp
17 VioWrtTTY 38 VioSetFont
18 VioScrollUp 39 VioGetState
19 VioScrollDn 40 VioSetState
20 Vi oScrol I Lf

When a registered function returns to the video router, the contents of
AX are interpreted as follows:

AX=O
No error. Do not invoke the corresponding Base Video Subsystem
routine. Return to caller with AX= 0.

5-41

VioRegister -
Register· Video Subsystem

AX =-1
No error. Invoke the corresponding Base Video Subsystem
routine. Return to caller with AX= return code from Base Video
Subsystem.

AX= error (not O or -1)
Do not invoke the corresponding Base Video Subsystem routine.
Return to caller with AX= error.

When an application registers a replacement for VioPopUp within a
session, the registered routine is only invoked when that session is in
the foreground. If VioPopUp is issued when that session is in the
background, the OS/2 default routine is invoked.

An Alternate Video Subsystem should be designed so that the rou
tines registered do not cause any hard errors when they are invoked.
Otherwise, a system lockout will occur. Code and data segments of
registered routines, which might potentially be loaded from diskette,
must be preloaded~

5-42

VioSavRedrawUndo -
Screen Save Redraw Undo

Purpose
VioSavRedrawUndo allows one thread within a process to cancel a
VioSavRedrawWait issued by another thread within the same
process.

Calling Sequence
EXTRN VioSavRedrawUndo:FAR

PUSH
PUSH
PUSH
CALL

WORD Ownerlndic
WORD Killlndic
WORD VioHandle
VioSavRedrawUndo

Where

Ownerlndic

;Ownership indicator
;Terminate indicator
;Video handle

indicates whether the thread issuing VioSavRedrawUndo wants
ownership of VioSavRedrawWait to be reserved for its process.

• If Ownerlndic = 0, reserve ownership
• If Ownerlndic = 1, give up ownership

Killlndlc
indicates whether the thread with the outstanding
VioSavRedrawWait should be returned an error code or be termi
nated.

• If Killlndic = 0, return error code
• If Killlndic = 1, terminate thread

VioHandle
is a reserved word of Os.

Returns

IF AX= O then NO error

ELSE AX = error code

5-43

VioSavRedrawUndo -
Screen Save Redraw Undo

Remarks
The issuing thread can reserve ownership of VioSavRedrawWait for
its process or give it up. If a thread's VioSavRedrawWait is can
celled, it is optionally terminated. VioSavRedrawUndo may be issued
only by a thread within the same process that owns
VioSavRedrawWait.

5-44

VioSavRedrawWait -
Screen Save Redraw Wait

Purpose
VioSavRedrawWait notifies a graphics mode application when it must
save or redraw its screen image. The return from this function call
provides the notification. The thread that issues the call performs the
save or redraw and then re-issues VioSavRedrawWait to wait until its
screen image must be saved or redrawn again.

Calling Sequence
EXTRN VioSavRedrawWait:FAR

PUSH WORD SavRedrawlndic
PUSH@ WORD NotifyType
PUSH WORD VioHandle
CALL VioSavRedrawWait

Where

SavRedrawlndic

;Save/redraw indicator
;Notify type (returned)
;Video handle

indicates which events the application is waiting for:

If SavRedrawlndic = 0
the session manager notifies the application for both save and
redraw operations.

If SavRedrawlndic = 1
the session manager notifies the application for redraw oper
ations only.

Notify Type
specifies the operation to be performed by the application upon
return from VioSavRedrawWait:

0 = save screen image
1 =restore screen image

VloHandle
is a reserved word of Os.

5-45

VioSavRedrawWait -
Screen Save Redraw Wait

Returns

IF AX = 0 then NO error

ELSE AX = error code

Remarks
OS/2 uses VioSavRedrawWait to notify a graphics mode application
to save or restore its screen image at screen switch time. The appli
cation in the outgoing foreground session is notified to perform a
save. The application in the incoming foreground session is notified
to perform a restore. The application must perform the action
requested and immediately re-issue VioSavRedrawWait. When an
application performs a save, it saves its physical display buffer, video
mode, and any other information the application needs to completely
redraw its screen at restore time.

Only one process per session can issue VioSavRedrawWait. The
process that issues VioSavRedrawWait first, becomes the owner of
the function.

A text mode application must issue VioSavRedrawWait only if the
application writes directly to the registers on the display adapter.
Assuming VioSavRedrawWait is not issued by a text mode applica
tion, OS/2 performs the required saves and restores.

An application that issues VioSavRedrawWait may also need to issue
VioModeWait. This would allow the application to be notified when it
must restore its mode at the completion of an application or hard
error popup. Refer to "VioModeWait - Restore Mode Wait" on
page 5-25 for more information. Two application threads would be
required to perform these operations in this case.

At the time a VioSavRedrawWait thread is notified, the session is in
transition to/from the background. Although the session's official
status is background, any selector to the physical display buffer pre
viously obtained by the VioSavRedrawWait process (through
VioGetPhysBuf) is valid at this time. The physical display buffer
must be accessed without issuing VioScrlock. Since the session's

5-46

VioSavRedrawWait -
Screen Save Redraw Wait

official status is background, any thread which issues VioScrlock
with the "wait if unsuccessful" option will in fact wait.

An application containing a VioSavRedrawWait thread should be
designed so that the process does not cause any hard errors while
the VioSavRedrawWait thread is running. Otherwise, there is a
potential for a system lockout situation to occur.

An application's VioSavRedrawWait thread may be notified to
perform a restore before it is notified to perform a save. This would
happen if the application was running in the background the first time
it issued VioSavRedrawWait.

Note: that the OS/2 Start command starts an application in the back
ground.

5-47

VioScrLock -
Lock Screen

Purpose
VioScrlock requests ownership of (locks) the physical display buffer.

Calling Sequence
EXTRN VioScrLock:FAR

PUSH WORD WaitFlag
PUSH@ BYTE Status
PUSH WORD VioHandle
CALL VioScrLock

Where

WaitFlag

;Block or not
;Lock status (returned)
;Video handle

indicates whether the process should block until the screen 110
can take place.

• O =return if screen 1/0 not available
• 1 =wait until screen 1/0 is available

Status
indicates whether the lock is successful.

• 0 = lock successful
• 1 = lock unsuccessful (in the case of no wait)
• Status is returned only when AX = 0.
• Status = 1 may be returned only when WaitFlag = 0.

VioHandle
is a reserved word of Os.

Returns

IF AX= 0 then NO error

ELSE AX = error code

5-48

Family API Considerations

VioScrLock -
Lock Screen

Some options operate differently in the DOS mode than they do in the
OS/2 mode. Therefore, the following restriction applies to VioScrlock
when coding in the DOS mode:

The status will always indicate the lock is successful (AX= 0)

Remarks
This function call permits a process to determine if 1/0 to the physical
screen buffer can take place. This prevents the process from writing
to the physical buffer when the process is in the background. Proc
esses must cooperate with the system in coordinating screen
accesses.

Screen switching is disabled while the screen lock is in place. If a
screen switch is suspended by a screen lock, and if the application
holding the lock does not issue VioScrUnlock within a system-defined
time limit, the screen switch occurs, and the process holding the lock
is frozen in the background. A process should yield the screen lock
as soon as possible to avoid being frozen when running in the back
ground. The timeout on the lock does not begin until a screen switch
is requested.

When the screen lock is in effect and another thread in the same or
different process (in the same session) issues VioScrlock, the second
thread receives an error code. VioScrUnlock must be issued by a
thread within the same process that issued VioScrlock.

5-49

Purpose
VioScrollDn scrolls the entire display buffer (or area specified within
the display buffer) down.

Calling Sequence
EXTRN VioScrollDn:FAR

PUSH
PUSH
PUSH
PUSH
PUSH
PUSH@
PUSH
CALL

WORD TopRow
WORD Lef tCo l
WORD Bot Row
WORD RightCol
WORD Lines
OTHER Cell
WORD VioHandle
VioScrollDn

Where

TopRow

;Top row
;Left column
;Bottom row
;Right column
;Number of lines
;Cell to be written
;Video handle

is the top row of the area to scrol I.

LeftCol
is the left column of the area to scroll.

BotRow
is the bottom row of the area to scroll.

RightCol
is the right column of the area to scroll.

Lines
is the number of lines to be inserted at the top of the screen area
being scrolled. If O is specified, no lines are scrolled.

Cell
is a character-attribute pair (two bytes) used as a fill character on
inserted lines.

VioHandle
is a reserved word of Os.

5-50

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks

VioScrollDn -
Scroll Screen Down

TopRow = O and LeftCol = O identifies the top left corner of the
screen.

If a value greater than the maximum value is specified for TopRow,
LeftCol, BotRow, RightCol, or Lines, the maximum value for that
parameter is used.

If TopRow and LeftCol = 0 and if BotRow, RightCol, and Lines=
65535 (or -1 in Assembler language), the entire screen will be filled
with the character defined by Cell.

5-51

· VioScroH~t ···· ~
Scroll Screen .Left

Purpose
VioScrolllf scrolls the entire display buffer (or area specified within
the display buffer) left.

Calling Sequence
EXTRN VioScrollLf:FAR

PUSH
PUSH
PUSH
PUSH
PUSH
PUSH@
PUSH
CALL

WORD TopRow
WORD Lef tCo 1
WORD Bot Row
WORD RightCol
WORD Lines
OTHER Cell
WORD VioHandle
Vi oScro 11 L f

Where

TopRow

;Top row
;Left column
;Bottom row
;Right column
;Number of lines
;Cell to be written
;Video Handle

is the top row of the area to scroll.

LettCol
is the left column of the area to scroll.

BotRow
is the bottom row of the area to scroll.

RightCol
is the right column of the area to scroll.

Lines
is the number of columns to be inserted at the right of the screen
area being scrolled. If O is specified, no lines are scrolled.

Cell
is a character attribute pair (two bytes) used as a fill character on
inserted columns.

VioHandle
is a reserved word of Os.

5-52

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks

VioScrollLf -
Scroll Screen Left

TopRow = 0 and LeftCol = 0 identifies the top left corner of the
screen.

If a value greater than the maximum value is specified for TopRow,
LeftCol, BotRow, RightCol, or Lines, the maximum value for that
parameter is used.

If TopRow and LeftCol = O and if BotRow, RightCol, and Lines=
65535 (or -1 in Assembler language), the entire screen will be filled
with the character defined by Cell.

5-53

VioScroHRt ·
Scroll Screen Right

Purpose
VioScrollRt scrolls the entire display buffer (or area specified within
the display buffer) right.

Calling Sequence
EXTRN VioScrollRt:FAR

PUSH
PUSH
PUSH
PUSH
PUSH
PUSH@
PUSH
CALL

WORD TopRow
WORD Lef tCo l
WORD Bot Row
WORD RightCol
WORD Lines
OTHER Cell
WORD VioHandle
VioScrollRt

Where

TopRow

;Top row
;Left column
;Bottom row
;Right column
;Number of lines
;Cell to be written
;Video handle

is the top row of the area to scroll.

LeftCol
is the left column of the area to scroll.

BotRow
is the bottom row of the area to scrol I.

RightCol
is the right column of the area to scroll.

Lines
is the number of columns to be inserted at the left of the screen
area being scrolled. If O is specified, no lines are scrolled.

Cell
is a character attribute pair (two bytes) used as a fill character on
inserted columns.

VioHandle
is a reserved word of Os.

5.54

Returns

IF AX = 0 then NO error

ELSE AX = error code

Remarks

VioScrollRt -
Scroll Screen Right

TopRow = O and LeftCol = O identifies the top left corner of the
screen.

If a value greater than the maximum value is specified for TopRow,
LeftCol, BotRow, RightCol, or Lines, the maximum value for that
parameter is used.

If TopRow and LeftCol = 0 and if BotRow, RightCol, and Lines=
65535 (or -1 in Assembler language), the entire screen will be filled
with the character defined by Cel I.

5-55

ViC>SCroUUp ·.··~

Scre>ll Screen.• Up

Purpose
VioScrollUp scrolls the entire display buffer (or area specified within
the display buffer) up.

Calling Sequence
EXT RN Vi oScro 11 Up: FAR

PUSH WORD TopRow ;Top row
PUSH WORD LeftCol ;Left column
PUSH WORD Bot Row ;Bottom row
PUSH WORD RightCol ;Right column
PUSH WORD Lines ;Number of lines
PUSH@ OTHER Cell ;Fill character
PUSH WORD VioHandle ;Video handle
CALL VioScrollUp

Where

TopRow
is the top row of the area to scroll.

LeftCol
is the left column of the area to scroll.

BotRow
is the bottom row of the area to scrol I.

RightCol
is the right column of the area to scroll.

Lines
is the number of lines to be inserted at the bottom of the screen
area being scrolled. If O is specified, no lines are scrolled.

Cell
is a character attribute pair (two bytes) used as a fill character on
inserted lines.

VioHandle
is a reserved word of Os.

5-56

Returns

IF AX= O then NO error

ELSE AX = error code

Remarks

VioScrollUp -
Scroll Screen Up

TopRow=O and LeftCol=O identifies the top left corner of the screen.

If a value greater than the maximum value is specified for TopRow,
LeftCol, BotRow, RightCol, or Lines, the maximum value for that
parameter is used.

If TopRow and LeftCol=O and if BotRow, RightCol, and Lines=65535
(or -1 in Assembler language), the entire screen will be filled with the
character defined by Cell.

5-57

'v1oscrut1·ti6bfi:,·~ ,.
unlocl<;screen· ..

' ... : '• . ; ••• . .. ·-. .,- , . ,. ,"·• .. ·,,: ·. ,,, :··. ~.

Purpose
VioScrUnLock releases ownership of (unlocks) the physical display
buffer.

Calling Sequence
EXTRN VioScrUnLock:FAR

PUSH WORD VioHandle
CALL VioScrUnLock

Where

VioHandle
is a reserved word of Os.

Returns

IF AX= O then NO error

ELSE AX = error code

;Video handle

Family API Considerations
Some options operate differently in the DOS mode than they do in the
OS/2 mode. Therefore, the following restriction applies to
VioScrUnLock when coding in the DOS mode:

The status will always indicate the unlock is successful (AX= 0).

Remarks
None.

5-58

VioSetAnsi -
Set ANSI On or Off

Purpose
VioSetAnsi activates or deactivates ANSI support.

Calling Sequence
EXTRN VioSetAnsi:FAR

PUSH WORD Indicator
PUSH WORD VioHandle
CALL VioSetAnsi

Where

Indicator

;On/Off indicator
;Video handle

equals 1 to activate ANSI support or 0 to deactivate ANSI.

VioHandle
is a reserved word of Os.

Returns

IF AX = 0 then NO error

ELSE AX = error code

Remarks
For ANSI support, "ON" is the default.

5-59

VioSetCp ~
Set Code Page

Purpose
VioSetCp allows a process to set the code page used to display text
data on the screen.

Calling Sequence
EXTRN VioSetCp:FAR

PUSH WORD Reserved
PUSH WORD CodePageID
PUSH WORD VioHandle
CALL VioSetCp

Where

Reserved
is a reserved word of Os.

CodePagelD

;CodePage Id
;Video handle

must be equivalent to one of the code page ID's specified on the
CONFIG.SYS CODEPAGE =statement or must specify the default
ROM code page (0000).

If the code page ID does not match one of the ID's on the
CODEPAGE =statement, an error will result. Refer to IBM Oper
ating System/2 User's Reference for a complete description of
CODEPAGE.

VioHandle
is a reserved word of Os.

Returns

IF AX= O then NO error

ELSE AX = error code

5-60

Remarks

VioSetCp -
Set Code Page

The code page tag specified must be either 0000 or have been speci
fied on the CONFIG.SYS CODEPAGE= statement. A value of 0000
indicates that the code page is to be set to the ROM code page pro
vided by the hardware.

5-81

VioSetCurPos···· ~
Set ·cursor.Position

Purpose
VioSetCurPos sets the cursor position.

Calling Sequence
EXTRN VioSetCurPos:FAR

PUSH WORD Row
PUSH WORD Column
PUSH WORD VioHandle
CALL VioSetCurPos

Where

Row

;Row data
;Column data
;Video handle

is the new cursor row position where O is the top row.

Column
is the new cursor column position where 0 is the left column.

VioHandle
is a reserved word of Os.

Returns

IF AX= O then NO error

ELSE AX = error code

Remarks
None

5-62

VioSetCurType -
Set Cursor Type

Purpose
VioSetCurType sets the cursor type.

Calling Sequence
EXTRN VioSetCurType:FAR

PUSH@ OTHER CursorData
PUSH WORD VioHandle
CALL VioSetCurType

Where

CursorData

;Cursor characteristics
;Video handle

is a structure that contains the characteristics of the cursor.

Size
WORD
WORD
WORD
WORD

Description
Cursor start line
Cursor end line
Cursor width
Cursor attribute

CursorStartLine
is the horizontal scan line in the character cell which marks the
top line of cursor. Note that if the character cell has N scan lines,
O is the top scan line of the character cell and N-1 is the bottom
scan line.

CursorEndLine
is the horizontal scan line in the character cell which marks the
bottom line of the cursor. Scan lines within a character cell are
numbered as defined under CursorStartline. The maximum value
which can be specified for CursorEndline is 31. The appearance
of the cursor when the number of pel rows defined in the cursor is
greater than the number of pel rows in a character cell is variable
depending upon the display adapter included in the configuration.

Cursor Width
is the width of the cursor in columns. The maximum value sup
ported by the OS/2 Base Video Subsystem is 1. CursorWidth = O
specifies the default width (one column).

5-63

VioSetCurType -
Set Cursor Type

CursorAttrib
is the attribute of the cursor.

Value = -1, is hidden. Any other value is normal.

VloHandle
is a reserved word of Os.

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks
None

5-64

Purpose

VioSetFont -
Set Font

VioSetFont downloads a display font. The font being set must be
compatible with the current mode.

Calling Sequence
EXTRN VioSetFont:FAR

PUSH@ OTHER RequestBlock ;Request block
PUSH WORD VioHandle ;Video handle
CALL VioSetFont

Where

RequestBlock
is a data structure that contains a request. The request type is
contained in the second word. The format of the request block is
shown below. The symbol in the right column has the following
meaning:

I - input parameter

5-65

VioSetFont
Set Font

Set Current Font (EGA, VGA, or
IBM Personal System/2™ Display Adapter)

WORD Length of structure (in bytes including length
itself)= 14

WORD Request type = 0, set current font

WORD Pel columns in character cell

WORD Pel rows in character cell

DWORD Far address of a data area that contains the
font table to set.

WORD Length in bytes of the data area that con-
tains the font table to set.

VioHandle
is a reserved word of Os.

Reiurns

IF AX = 0 then NO error

ELSE AX = error code

Remarks

I

I

I

I

I

I

When VioSetFont is issued, the current code page is reset. If
VioGetCp is subsequently issued, a unique error code is returned in
AX. VioSetFont is applicable only for the enhanced graphics adapter,
VGA or IBM Personal System/2 Display Adapter.

Note: Return code, ERROR_VIO_USER_FONT represents a warning.
It indicates that although the font could not be loaded into the adapter
using the current mode, the font was saved for use with a later
VioSetMode.

5-66

Purpose
VioSetMode sets the mode of the display.

Calling Sequence
EXTRN VioSetMode:FAR

VioSetMode -
Set Display Mode

PUSH@ OTHER ModeData
PUSH WORD VioHandle

;Mode characteristics
;Video handle

CALL VioSetMode

Where

ModeData
is a structure that contains the characteristics of the mode being
set.

Size
WORD
BYTE
BYTE
WORD
WORD
WORD
WORD

Length

Description
Length
Type
Color
Text Columns
Text Rows
Horizontal Resolution
Vertical Resolution

is an input parameter to VioSetMode. Length specifies the length
of the data structure in bytes including Length itself. The
minimum structure size required is three bytes, and the maximum
structure size required is 12 bytes. Any value specified for Length
other than 3 must be an even number. If a structure of length less
than the maximum is specified, OS/2 will use default values for
the remaining fields.

I Type
is a bit mask that contain specifications for the mode being set.
The definitions of the bits follow:

5-67

VioSetMode -
Set Display Mode

xxxxxxxb b == e monochrome compatible mode
b = 1 other

xxxxxxbx b = e text mode
b = 1 graphics mode

xxxxxbxx b = e enable color burst
b = 1 disable color burst

Color
defines the number of colors as a power of 2. This is equivalent to
the number of color bits which define the color. For example,

Color == 1 specifies 2 colors
Color= 2 specifies 4 colors
Color = 4 specifies 16 colors
Color = 8 specifies 256 colors

Color = e should be specified for
monochrome modes 7, 7+, and F.

Text Columns
are the number of text columns.

Text Rows
are the number of text rows. are supported for The color graphics
adapter supports 25 rows. The enhanced graphics adapter sup
ports 25 and 43 rows. The VGA adapter and the IBM Personal
System/2™ Display Adapter support 25 and 50 rows.

Horizontal Resolution
is the number of pel columns.

Vertical Resolution
is the number of pel rows.

VloHandle
is a reserved word of Os.

Returns

IF AX= O then NO error

ELSE AX = error code

5-68

Remarks

VioSetMode -
Set Display Mode

VioSetMode initializes the cursor position and type. VioSetMode will
clear the screen in the DOS mode and in DOS 3.3. For all other envi
ronments, to clear the screen, use one of the VioScrollxx calls.

The disable color burst bit in the Type field in the VioSetMode data
structure is functional only for the color graphics adapter. For all
other display adapters the setting of this bit is returned on any subse
quent VioGetMode call but is otherwise ignored.

5-69

VioSetMode -
Set Display Mode

EXAMPLES

Mode 2
Type = 00000101
Color = 4
Text Columns = 80
Text Rows = 25
Horizontal Resolution= 640
Vertical Resolution = 200

Mode 3

Type
Color
Text Columns
Text Rows

= 00000001
= 4
= a0
= 25

Horizontal Resolution= 640
Vertical Resolution = 200

Mode 3*

Type = 00000001
Color = 4
Text Columns = 80
Text Rows = 25
Horizontal Resolution = 640
Vertical Resolution = 350

Mode 3+

Type = 00000001
Color = 4
Text Columns = 80
Text Rows = 25
Horizontal Resolution = 720
Vertical Resolution = 400

Mode 5
Type = 00000111
Color = 2
Text Columns = 40
Text Rows = 25
Horizontal Resolution = 320
Vertical Resolution = 200

5-70

Mode 6
Type
Color
Text Columns
Text Rows

= 00000011
= 1
= a0
= 25

Horizontal Resolution = 640
Vertical Resolution = 200

Mode 7
Type = 00000000
Color = 0
Text Columns = 80
Text Rows = 25
Horizontal Resolution= 720
Vertical Resolution = 350

Mode 7+

Type = 00000000
Color = 0
Text Columns = 80
Text Rows = 25
Horizontal Resolution = 720
Vertical Resolution = 400

Mode E

Type = 00000011
Color = 4
Text Columns = 80
Text Rows = 25
Horizontal Resolution= 640
Vertical Resolution = 200

Mode F

Type = 00000010
Color = e
Text Columns = 80
Text Rows = 25
Horizontal Resolution= 640
Vertical Resolution = 350

VioSetMode -
Set Display Mode

5-71

VioSetMode -
Set Display Mode

Mode le

Type = 00000011
Color = 4
Text Columns = 80
Text Rows = 25
Horizontal Resolution= 640
Vertical Resolution = 350

Mode 11

Type = 00000011
Color = 1
Text Columns = 80
Text Rows = 30
Horizontal Resolution= 640
Vertical Resolution = 480

Mode 12

Type = 00000011
Color = 4
Text Columns = 80
Text Rows = 30
Horizontal Resolution = 640
Vertical Resolution = 480

Mode 13

Type = 00000011
Color = 8
Text Columns = 40
Text Rows = 25
Horizontal Resolution = 320
Vertical Resolution = 200

5-72

Purpose

VioSetState -
Set Video State

VioSetState performs one of the following functions; sets palette reg
isters, sets the overscan (border) color or sets the blink/background
intensity switch.

Calling Sequence
EXTRN VioSetState:FAR

PUSH@ OTHER RequestBlock ;Request block
PUSH WORD VioHandle ;Video handle
CALL VioSetState

Where

RequestBlock
is a data structure that contains the request. The content of the
structure varies depending on the request type. The request type
is contained in the second word. The formats of the supported
request blocks are shown below. The symbol in the right column
has the following meaning:

• I - input parameter

5-73

VioSetState -
Set Video State

Set Palette Registers (EGA, VGA, or
IBM Personal System/2 Display Adapter)

WORD Length of structure (in bytes including length
itself) maximum length= 38.

WORD Request type = 0, set palette registers

WORD First palette register to set. Must be in range 0 to
15. The palette registers are set in sequential
order. The number of palette registers set is
based upon the length of the structure.

1 or One WORD that contains the color value for each
more palette register being set.
WORDs

Set Overscan (Border) Color (CGA, VGA, or
IBM Personal System/2 Display Adapter)

WORD Length of structure (in bytes including length
itself)= 6

WORD Request type = 1, set overscan (border) color

WORD Color value

Set Blink/Background Intensity Switch
(CGA, EGA, VGA,
or IBM Personal System/2 Display Adapter)

WORD Length of structure (in bytes including length
itself)= 6

WORD Request type= 2, set blink/ background intensity
switch

5-74

I

I

I

I

I

I

I

I

I

VioSetState -
Set Video State

Set Blink/Background Intensity Switch
(CGA, EGA, VGA,
or IBM Personal System/2 Dlsplay Adapter)

WORD Value = 0, enables blinking foreground colors.
Value= 1, enables high intensity background
colors

VioHandle
is a reserved word of Os.

Returns

IF AX = 0 then NO error

ELSE AX = error code

Remarks
None

I

5-75

VioShowBuf ·
Display Logical Buffer

Purpose
VioShowBuf updates the physical display buffer with the logical video
buffer (LVB).

Calling Sequence
EXTRN VioShowBuf:FAR

PUSH WORD Offset
PUSH WORD Length
PUSH WORD VioHandle
CALL VioShowBuf

Where

Offset

;Offset into LVB
;Length
;Video handle

is the starting offset within the logical video buffer where the
screen update begins.

Lengih
is the length of the area to be updated to the screen.

VioHandle
is a reserved word of Os.

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks
VioShowBuf is ignored unless the session is running in the fore
ground and some process within the session has previously called
VioGetBuf.

VioShowBuf is not supported in graphics modes.

5-76

VioWrtCellStr -
Write Char/ Attr String

Purpose
VioWrtCellStr writes a string of character-attribute pairs (cells) to the
display.

Calling Sequence
EXTRN VioWrtCellStr:FAR

PUSH@
PUSH
PUSH
PUSH
PUSH
CALL

OTHER CellStr
WORD Length
WORD Row
WORD Column
WORD VioHandle
Vi oWrtCell Str

Where

Ce/IStr

;String to be written
;Length of string
;Starting row position for output
;Starting column position for output
;Video handle

is a string of character-attribute cells to be written.

Length
is the length of the string to be written in bytes. Each
character-attribute cell is two bytes.

Row
is the starting cursor row to be written into where 0 is the top row.

Column
is the starting cursor column to be written into where 0 is the left
column.

VioHandle
is a reserved word of Os.

Returns

IF AX= 0 then NO error

ELSE AX = error code

5-77

VioWrtCellStr -
Write Char/ Attr String

Remarks
If a string write comes to the end of the line and is not complete, the
string write continues at the beginning of the next line. If the write
comes to the end of the screen, the write terminates.

5-78

VioWrtCharStr -
Write Character String

Purpose
VioWrtCharStr writes a character string to the display.

Calling Sequence
EXTRN VioWrtCharStr:FAR

PUSH@
PUSH
PUSH
PUSH
PUSH
CALL

OTHER CharStr
WORD Length
WORD Row
WORD Column
WORD VioHandle
VioWrtCharStr

Where

CharStr

;String to be written
;Length of character string
;Starting row position for output
;Starting column position for output
;Video handle

is the character string to be written.

Length
is the length of the character string in bytes.

Row
is the starting cursor row to be written into where 0 is the top row.

Column
is the starting cursor column to be written into where 0 is the left
column.

VioHandle
is a reserved word of Os.

Returns

IF AX= O then NO error

ELSE AX = error code

5-79

VioWrtCharStr -
Write Character String

Remarks
If a string write comes to the end of the line and is not complete, the
string write continues at the beginning of the next line. If the write
comes to the end of the screen, the write terminates.

Note: The string is written to the display without changing any attri
butes.

5-80

Purpose

VioWrtCharStrAtt -
Write Char String with Attr

VioWrtCharStrAtt writes a character string with repeated attribute to
the display.

Calling Sequence
EXTRN VioWrtCharStrAtt:FAR

PUSH@
PUSH
PUSH
PUSH
PUSH@
PUSH
CALL

OTHER CharStr
WORD Length
WORD Row
WORD Column
OTHER Attr
WORD VioHandle
VioWrtCharStrAtt

Where

CharStr

;String to be written
;Length of string
;Starting row position for output
;Starting column position for output
;Attribute to be replicated
;Video handle

is the character string to be written.

Length
is the length of the character string in bytes.

Row
is the starting cursor row to be written into where 0 is the top row.

Column
is the starting cursor column to be written into where 0 is the left
column.

Attr
is the attribute to be used in the display buffer for each character
of the string written.

VioHandle
is a reserved word of Os.

5-81

VioWrtCharStrAtt -
Write Char String with Attr

Returns

IF AX= 0 then NO error

ELSE AX = error code

Remarks
If a string write comes to the end of the line and is not complete, the
string write continues at the beginning of the next line. If the write
comes to the end of the screen, the write terminates.

5-82

Purpose

VioWrtNAttr -
Write N Attributes

VioWrtNAttr writes an attribute to the display a specified number of
times.

Calling Sequence
EXTRN VioWrtNAttr:FAR

PUSH@ OTHER Attr
PUSH WORD Times
PUSH WORD Row
PUSH WORD Column
PUSH WORD VioHandle
CALL VioWrtNAttr

Where

Attr

;Attribute to be written
;Repeat count
;Starting row position for output
;Starting column position for output
;Video handle

is the attribute to be written.

Times
is the number of times to write the attribute.

Row
is the starting cursor row to be written into where 0 is the top row.

Column
is the starting cursor column to be written into where O is the left
column.

VioHandle
is a reserved word of Os.

Returns

IF AX = 0 then NO error

ELSE AX = error code

5-83

VioWrtNAttr -
Write N Attributes

Remarks
If~ repeated write comes to the end of the line and is not complete,
the write continues at the beginning of the next line. If the write
comes to the end of the screen, the write terminates.

5-84

Purpose

VioWrtNCell -
Write N Char/Attrs

VioWrtNCell writes a cell (or character-attribute pair) to the display a
specified number of times.

Calling Sequence
EXT RN Vi oWrtNCell: FAR

PUSH@ OTHER Cell
PUSH WORD Times
PUSH WORD Row
PUSH WORD Column
PUSH WORD VioHandle
CALL VioWrtNCell

Where

CellStr

;Cell to be written
;Repeat count
;Starting row position for output
;Starting column position for output
;Video handle

is the character-attribute cell (two bytes) to be written.

Times
is the number of times to write the cell.

Row
is the starting cursor row to be written into where 0 is the top row.

Column
is the starting cursor column position to be written, where 0 is the
left column.

VioHandle
is a reserved word of Os.

Returns

IF AX= 0 then NO error

ELSE AX = error code

5-85

VioWrtNCell -
Write N Char/Attrs

Remarks
If a repeated write comes to the end of the line and is not complete,
the write continues at the beginning of the next line. If the write
comes to the end of the screen, the write terminates.

5-86

Purpose

VloWrtNChar -
Write N Characters

VioWrtNChar writes a character to the display a specified number of
times.

Calling Sequence
EXTRN VioWrtNChar:FAR

PUSH@ OTHER Char
PUSH WORD Times
PUSH WORD Row
PUSH WORD Column
PUSH WORD VioHandle
CALL VioWrtNChar

Where

Char

;Character to be written
;Repeat count
;Starting row position for output
;Starting column position for output
;Video handle

is the character to be written.

Times
is the number of times to write the character.

Row
is the starting cursor row to be written into where O is the top row.

Column
is the starting cursor column to be written into where O is the left
column.

VioHandle
is a reserved word of Os.

Returns

IF AX= O then NO error

ELSE AX = error code

5-87

VioWrtNChar -
Write N Characters

Remarks
If a repeated write comes to the end of the line and is not complete,
the write continues at the beginning of the next line. If the write
comes to the end of the screen, the write terminates.

5-88

Purpose

VioWrtTTY -
Write TTY String

VioWrtTIY writes a character string to the display starting at the
current cursor position. At the completion of the write, the cursor is
positioned at the first position beyond the end of the string.

Calling Sequence
EXTRN VioWrtTTY:FAR

PUSH@ OTHER CharStr
PUSH WORD Length
PUSH WORD VioHandle
CALL VioWrtTTY

Where

CharStrlng
is the string to be written.

Length

;String to be written
;Length of string
;Video handle

is the length of the character string in bytes.

VioHandle
is a reserved word of Os.

Returns

IF AX = O then NO error

ELSE AX = error code

Remarks
If a string write comes to the end of the line and is not complete, the
string write continues at the beginning of the next line. If the write
comes to the end of the screen, the screen is scrolled, and the write
continues until completed.

The characters carriage return, line feed, backspace, tab and bell are
treated as commands rather than printable characters. Backspace is
a non-destructive backspace. Tabs are expanded to provide standard

5-89

VioWrtTTY -
Write TTY String

8-byte-wide fields. VioWrtTTY is the only video call affected by
Ctrl-PrtSc and ANSI.

Characters are written using the current attribute defined by ANSI or
the default value of X'07'.

5-90

Chapter 6. Generic IOCtl Commands

OS/2 device drivers are used by OS/2 to access the 110 hardware.
The IOCtl functions provide a method for an application, or sub
system, to send device-specific control commands to a device driver.
The IOCtl functions are issued through the DosDevlOCtl API function
request. The IOCtl functions are subfunctions of the DosDevlOCtl API
function request. Applications should use the DosDevlOCtl function
request for OS/2 Applications and the INT 21 H IOCtl request for DOS
applications. See "DosDevlOCtl - 1/0 Control for Devices" on
page 2-34 for additional information.

The category and function fields are determined as follows. Each
code is contained in a byte.

Category Code

Category Code
0... OS/2 Defined
1... User Defined
.xxx xxxx Code

Function Code

Function
0 ...
1...
.0 ..
.1 ..
.. 0 .
.. 1.
... x xxxx

Code
Return error if unsupported
Ignore if unsupported
Intercepted by OS/2
Passed to driver
Sends data and commands to device
Queries data and information from device
Subfunction

Note that the sends/queries data bit is intended only to regularize the
function set. It plays no critical role; some functions may contain both
command and query elements. The convention is that such com
mands are defined as sends data.

6-1

Generic IOCtl Example

Following is the calling sequence for the DosDevlOCtl call:

EXTRN DosDevIOCtl:Far

PUSH@
PUSH@
PUSH
PUSH
PUSH

OTHER
OTHER
WORD
WORD
WORD

Data
Pannli st
Function
Category
DevHandle

;Data Packet
;Parameter Packet
;Function Code
;Category Code
;User's Device Driver File Handle

CALL DosDevIOCtl

The DosDevlOCtl call sends the request to the device driver request
packet. The device driver receives the request packet, and looks for
the Command Code (Command 16 is the Generic IOCtl command) to
identify the request.

Note that each device driver can define the structure of the Data
Packet and the Parameter Packet but all device drivers use the same
request header. Refer to "DosDevlOCtl - 1/0 Control for Devices"
on page 2-34 for more information.

The list of categoiies and functions for the GENERiC iOCti request are
summarized below.:

CAT FUNCTION DESCRIPTION
01 Serial Device Control

14H Reserved
34H Reserved
41 H Set baud (bit) rate
42H Set line characteristics (stop, parity, data bits)
44H Transmit Byte Immediate
45H Break off
46H Set modem control signals
47H Behave as if XOFF received (stop transmit)
48H Behave as if XON received (start transmit)
49H Reserved
4BH Break on

6-2

CAT FUNCTION DESCRIPTION
53H Set Device Control Block (DCB) parameters
61H Return current baud (bit) rate
62H Return line characteristics
64H Return COM status
65H Return transmit data status
66H Return modem control output signals
67H Return current modem input signals
68H Return number of chars in receive queue
69H Return number of chars in transmit queue
6DH Return COM error
72H Return COM event information
73H Return Device Control Block (DCB) parameters

02 Reserved
03 Pointer Draw Control

72H Get pointer draw address (pointer draw DD)
04 Keyboard Control

50H Set code page
51H Set input mode (default ASCII)
52H Set interim character flags
53H Set shift state
54H Set typamatic rate and delay
55H Notify of change of foreground session
56H Set session manager Hot Key
57H Set KCB
58H Set code page ID
5BH Reserved
5CH Set NLS & custom code page
71H Get input mode
72H Get interim character flags
73H Get shift state
74H Read character data record(s)
75H Peek character data record
76H Get session manager Hot Key
77H Get keyboard type
78H Get code page ID
79H Translate scan code to ASCII

05 Printer Control

6-3

CAT FUNCTION DESCRIPTION
42H Set frame control (CPL, LPI)
44H Set infinite retry
45H Reserved
46H Initialize printer
48H Activate Font
62H Get frame control
64H Get infinite retry
66H Get printer status
69H Query Active Font
6AH Verify Font

06 Light Pen Control
07 Mouse Control

50H Allow ptr drawing after screen switch
51H Update screen display mode
52H Screen switcher call
53H Set sealing factors
54H Set event mask
55H Reserved
56H Set pointer shape
57H Unmark collision area
58H Mark collision area
59H Set pointer screen position
5AH Set OS/2 mode pointer draw address
5BH Set DOS mode pointer draw address
5CH Set device status flags
60H Get number of buttons
61H Get number of mickeys/centimeter
62H Get device status flags
63H Read event queue
64H Get event queue status
65H Get event mask
66H Get scaling factors
67H Get pointer screen position
68H Get pointer shape image
69H Reserved

08 Logical Disk Control
OOH Lock drive

CAT FUNCTION DESCRIPTION
01H Unlock drive
02H Redetermine media
03H Set logical map
20H Block removable
21H Get logical map
22H Reserved
43H Set device parameters
44H Write track
45H Format and verify track
5EH Reserved
5FH Reserved
63H Get device parameters
64H Read track
65H Verify track

09 Physical Disk Control
OOH Lock physical drive
01H Unlock physical drive
44H Physical write track
63H Get physical device parameters
64H Physical read track
65H Physical verify track

10 Character Device Monitor Control
40H Register

11 General Device Control
01H Flush input buffer
02H Flush output buffer
60H Query monitor support

12-127 Reserved Category Codes

6-5

ASYNC (RS232-C) Generic IOCtl

Wherever null pointer appears, it is the application's responsibility to
set up a null pointer for the appropriate packet pointer before calling
the device driver. IOCtls may be interpreted differently by future
releases if the pointer is not a null pointer. If a NULL POINTER is
called for and a null pointer is not received by the device driver, it is
considered an invalid parameter or data packet value in this section.

The application cannot assume a given timing relationship between
when the IOCtls are executed and when data is received or trans
mitted by the ASYNC hardware.

Data Carrier Detect (DCD) is the same signal as Receiver Line Signal
Detect (RLSD).

The device driver services each communications port
(COM1, COM2, ...) independently. IOCtls issued to the device driver
for a given port have absolutely no effect on any other communi
cations ports that the device driver is servicing.

Fo!!owing is a summary of Category 1 descriptions:

Function Description
14H reserved
34H reserved
41 H Set baud (bit) rate
42H Set line characteristics (stop, parity, data bits)
44H Transmit Byte Immediate
45H Break off
46H Set modem control signals
47H Behave as if XOFF received (stop transmit)
48H Behave as if XON received (start transmit)
49H reserved
4BH Break on
53H Set Device Control Block (DCB) parameters
61 H Return current baud (bit) rate
62H Return line characteristics
64H Return COM status
65H Return transmit data status
66H Return modem control output signals
67H Return current modem input signals

6-6

68H Return number of chars in receive queue
69H Return number of chars in transmit queue
6DH Return COM error
72H Return COM event information
73H Return Device Control Block (DCB) parameters

6-7

Category; 1 -
Function 41 H

Purpose
Set Baud Rate

Parameter Packet Format

I Fleld

Bit Rate

Data Packet Format
None. Packet pointer must be NULL.

Where

Bit Rate

Length

WORD

The Bit Rate field is a binary integer representing the actual bit
rate that the device driver should use to set the bit rate of the port
The val id values are:

110
150
300
600
1200
2400
4800
9600
19200 (AT hardware not rated for this speed)

An OPEN request packet will not cause the device driver to change
the bit rate from its previous value. The initial value is 1200 baud.

Returns
If the call is made with invalid Parameter/Data packet values, a
general failure error is reported.

6-8

Category 1 -
Function 41 H

Remarks
If a general failure error is not returned, the device driver will
perform the action described in Bit Rate.

6-9

Category·. 1 -
Function 42H

Purpose
Set Line Characteristics (stop bits, parity, data bits)

Parameter Packet Format

Fie Id Length

Data Bits BYTE

Parity BYTE

Stop Bits BYTE

Data Packet Format
None. Packet pointer must be NULL.

Where

Data Bit

Value
OOH-04H
05H
06H
07H
08H
09H-FFH

Parity

Value
OOH
01H
02H
03H
04H
05H-FFH

6-10

Meaning
reserved
5 data bits
6 data bits
7 data bits (initial value)
8 data bits
reserved

Meaning
No parity
Odd parity
Even parity (initial value)
Mark parity (parity bit always 1)
Space parity (parity bit always 0)
reserved

Stop Bits

Value
OOH
01H
02H
03H-FFH

Returns

Meaning
1 stop bit (initial value)

Category 1 -
Function 42H

1.5 stop bits (valid with 5 bit word length only)
2 stop bits (not valid with 5 bit word length)
reserved

If the call is made with invalid Parameter/Data packet values, a
general failure error is reported and the line characteristics are not
changed for any parameters that were valid.

Remarks
If a general failure error is not returned, the device driver will set the
line characteristics as defined.

An OPEN request packet will not cause the device driver to change
the line characteristics from its previous values.

If the word length is less than 8 bits then the appropriate high order
bits for received data will be 0 when placed in the receive queue by
the device driver and when operated on by the device driver (for
example, XON/XOFF checking, null stripping). This only applies to
data that is received after the command is operated on by the device
driver. Data already in the device driver receive queue is not
affected in any way by a change in the word length.

If the word length is less than 8 bits the device driver will not auto
matically truncate control/transmit data that the application may tell
the device driver to operate on or use. No error will be reported by
the device driver if transmit or control data given to the device driver
has high order bits of non-0 value.

For example, if the device driver is told that the word length is 7 bits
(high order bit of all data in receive queue from now on is 0) and the
XOFF character is 80H then the device driver will never be able to
recognize the XOFF character if automatic transmit flow control is
enabled. If the error substitution character is set to 80H by the appli-

6-11

Category 1 -
Function 42H

cation with a word length of 7 currently being active, the device driver
will still place an 80H in the receive queue. It is the responsibility of
the application to maintain consistency between the requested word
length for the COM device and the requests that the application
makes of the device driver.

6-12

Purpose
Transmit Byte Immediate

Parameter Packet Format

Fie Id

Character to be Transmitted

Data Packet Format
Packet pointer must be NULL.

Returns

Category 1
Function 44H

Length

BYTE

If the call is made with an invalid Data Packet value or if there is
already another character waiting to be transmitted immediately due
to a previous Category 1 Function 44H request that has not been ful
fil led then a general failure error is reported and this request is
ignored. A transmit immediate request is considered fulfilled when
the character is given to the transmit hardware.

Remarks
If a general failure is not returned, the device driver will immediately
transmit the byte contained in the Parameter Packet subject to the fol
lowing conditions:

1. If there is data currently in the transmit queue being transmitted,
or waiting to be transmitted, the character to be transmitted
immediately will be placed at the logical front of the device driver
transmit queue (not considered in transmit queue) so it is the next
character to be given to the transmit hardware. If automatic
receive flow control is enabled then a XON or XOFF character
may or may not be placed ahead of the character to be trans
mitted immediately.

2. This request always completes immediately (before the character
is actually transmitted) even if the character may not be imme
diately transmitted for reasons discussed below. If there already
is one character waiting to transmit immediately due to a pre-

6-13

Category 1 -
Function 44H

vious request then a general failure error will be returned and the
application must make this request again after there is no char
acter waiting to transmit immediately in the device driver
transmit queue. Category 1 Function 64H (Return COM status}
can be used to determine whether a character is currently waiting
to be transmitted immediately.

3. The device driver will not immediately transmit the character
waiting to transmit immediately if the device driver is not trans
mitting characters due to modem control signal output hand
shaking (see Set Device Control Block (DCB} Category 1 Function
53H Note 3} or if the device driver is currently transmitting a
break.

4. If the device driver is not transmitting characters due to auto
matic transmit or receive flow control (XON/XOFF} being enabled
(with the proper set of conditions having happened, see Category
1 Function 53H - Set Device Control Block (DCB}}, or due to being
asked to behave as if an XOFF character had been received (Cat
egory 1 Function 47H} then the device driver will still transmit a
character that is waiting to be transmitted immediately due to this
request. WARNING: An application which requests the device
driver to transmit a character immediately when automatic
transmit or receive flow control is enabled may cause unexpected
results to happen to the communications line flow control pro
tocol.

5. This is generally used to manually send XON and XOFF charac
ters.

6. The character waiting to be transmitted immediately is not con
sidered part of the device driver transmit queue and is not
flushed due to a flush request. XON/XOFF characters that are
automatically transmitted due to automatic receive flow control
may or may not be placed ahead of the character waiting to be
transmitted immediately. Applications should not have depend
encies on this ordering.

6-14

Purpose
Set Break Off

Parameter Packet Format
None. Packet pointer must be NULL.

Data Packet Format

Fie Id

COM Error Word (COMERR)

Where

COM Error Word

Category 1 -
Function 45H

Length

WORD

The device driver returns this information if a general failure error
is not reported. See Category 1 Function 6DH, Return COM Error,
for COMERR definition. The COM device error information is not
cleared by this action.

Returns
If the call is made with an invalid Parameter Packet value then a
general failure error is reported, this function is not performed, and
valid information is not returned in the Data Packet.

Remarks
If a general failure error is not returned then the device driver will
stop generating a break signal. It is not considered an error if the
device driver is not generating a break signal. The device driver will
then resume transmitting characters taking into account all the other
reasons why it may or may not transmit characters.

6-15

Category:t. ~
Function 46H

Purpose
Set Modem Control Signals

Parameter Packet Format

Field

Modem Control Signals ON Mask

Modem Control Signals OFF Mask

Data Packet Format

Fie Id

COM Error Word (COMERR)

Where

Modem Control Signals Value

Length

BYTE

BYTE

Length

WORD

The device driver will set the modem control-signals as defined in
this field. Bit 0 is DTR and bit 1 is RTS. If any other bits are
set/reset by the masks then a general failure error results. The
OFF mask contains a mask of the bits to turn off. The OFF mask
has bits of 0 for the bits to turn off. The ON mask contains a mask
of the bits to turn on. The ON mask has bits of 1 for the bits to turn
on. If the Parameter Packet shows to turn off and on the same bit,
the bit will be turned on.

For example:

6-16

Mask ON Mask OFF
01H FFH
OOH FEH
02H FFH
OOH FDH
03H FDH
OOH FCH

Meaning
Set DTR

Category 1 -
Function 46H

Clear DTR
SetRTS
Clear RTS
Set DTR and RTS
Clear DTR and RTS

If the DTR control mode input handshaking or the RTS control
mode input handshaking or toggling on transmit is set then this
request is not allowed to try to change the state of the modem
control signal(s) that is (are) being used for input handshaking or
toggling on transmit. If the request tries to modify a modem
control signal that is being used for input handshaking or toggling
on transmit then a general failure will result.

COM Error Word
The device driver returns this information if a general failure error
is not returned to the application. See Category 1, Function 6DH,
Return COM Error, for COMERR definition. The COM device error
information is not cleared by this action.

At device driver initialization, the device driver will turn OFF DTR
and RTS for the COM devices that it owns.

An OPEN request packet, when the COM device is not already
open (from a previous open without a close) (first level open) will
cause DTR and RTS to be set according to the DTR Control Mode
and the RTS Control Mode. See Note 1 of Set Device Control
Block (DCB) (Category 1 Function 53H).

Note: If the port will not be open any more after processing a
close request packet (last level close) DTR and RTS will be turned
OFF (by the device driver).

After the transmit hardware has completely transmitted (at the
physical RS232 interface) all the data that it has been given to
transmit by the device driver and at least 10 additional character
times have elapsed.

6-17

Category 1 -
Function 46H

Returns
If the call is made with invalid Parameter Packet values then a
general failure error is reported, the modem control signals are not
changed, and the data packet information returned to the application
is undefined.

Remarks
None

6-18

Purpose
Behave as if XOFF Received (stop transmitting)

Parameter Packet Format
None. Packet pointer must be NULL.

Data Packet Format
None. Packet pointer must be NULL.

Returns

Category 1 -
Function 47H

If the call is made with invalid Parameter/Data Packet values, a
general failure error is reported and this request is not performed by
the device driver.

Remarks
If a general failure error is not returned by the device driver, this
function causes data transmission to be halted by preventing the
device driver from sending additional data to the transmit hardware.

If automatic transmit flow control is enabled then this request causes
the device driver to behave exactly as if it received the XOFF char
acter. Transmission can be resumed (due to being stopped from this
request) when an XON is received by the device driver, when a Cate
gory 1 Function 48H (Behave as if XON received) request is received,
or when the device driver is told to disable automatic transmit flow
control and the previous state was that automatic transmit flow
control was enabled.

If automatic transmit flow control is disabled then a Category 1 Func
tion 48H (Behave as if XON received) request is required for trans
mission to be resumed (due to being stopped from this request). If
after this request is received, the device driver is told to enable auto
matic transmit flow control then transmission is still disabled but can
be re-enabled (due to being stopped from this request) by any of the
scenarios discussed in the automatic transmit flow control being
enabled scenario.

6-19

Category 1 -
Function 47H

Note: There still may be other reasons why transmission may be
disabled. (See Return COM Status, Category 1 Function 64H.)

6-20

Category 1 -
Function 48H

Purpose
Behave as if XON Received (start transmitting)

Parameter Packet Format
None. Packet pointer must be NULL.

Data Packet Format
None. Packet pointer must be NULL.

Returns
If the call is made with invalid Parameter/Data Packet values, a
general failure error is reported and this request is not performed by
the device driver.

Remarks
If a general failure error is not returned by the device driver, this
function allows data transmission to be resumed by the device driver
if data transmission is halted due to a Category 1 function 47H
(Behave as if XOFF received) request or due to an XOFF character
being received while the device driver is in automatic transmit flow
control mode.

Note: There still may be other reasons why transmission may be
disabled; so transmission may not be resumed. (See Return COM
Status, Category 1 Function 64H.)

6-21

Catego.ry ·· 1 -
Function 4BH

Purpose
Set Break On

Parameter Packet Format
None. Packet pointer must be NULL.

Data Packet Format

Fie Id

COM Error Word (COMERR)

Where

COM Error Word

Length

WORD

The device driver returns this information if a general failure error
is not reported. See Category 1 Function 6DH, Return COM Error,
for COMERR definition. The COM device error information is not
cleared by this action.

A CLOSE request packet, when after processing this close request
the port will not be open any more (from another open without a
close) will cause break to be turned off.

Returns
If the call is made with an invalid Parameter Packet value then a
general failure error is reported, this function is not performed and
valid information is not returned in the Data Packet.

Remarks
If a general failure error is not returned then the device driver will
perform the following action:

The device driver will generate the break signal immediately. It is
not considered an error if the device driver is already generating a
break signal. The device driver will not wait for the transmit hard
ware to become empty. Note that more data will not be given to the

6-22

Category 1 -
Function 4BH

transmit hardware until the break is turned off The break signal will
always be transmitted, regardless of whether the device driver is or
is not transmitting characters due to other reasons.

6-23

Category 1· .
Function 53H

Purpose
Set Device Control Block (DCB)

Parameter Packet Format

Field

Write Timeout

Read Timeout

Flags1

Flags2

Flags3

Error Replacement Character

Break Replacement Character

XON Character

XOFF Character

Data Packet Format
None. Packet pointer must be NULL.

Where

Write Timeout

Length

WORD

WORD

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

specifies the time period used for write timeout processing. The
value is in .01 second units (based on 0, where 0 equals .01
seconds). Refer to Note 8: Write Timeout later in this chapter.

Read Timeout
specifies the time period used for read timeout processing. The
value is in .01 second units (based on 0, where 0 equals .01
seconds). Refer to Note 9: Read Timeout later in this chapter.

6-24

Flags1:

Note Bit
1 0-1

2
3 3
3 4
3 5
4 6

7

Flags2:

Note Bit
2 0

2

5 2
6 3
7 4

5
1 6-7

Category 1 -
Function 53H

Meaning
DTR Control Mode
Bit 1 Bit 0

O O Disable
O 1 Enable
1 0 Input handshaking

Invalid input resulting in
general failure

reserved (set to 0)
Enable output handshaking using CTS
Enable output handshaking using DSR
Enable output handshaking using DCD
Enable input sensitivity using DSR
reserved (set to 0)

Meaning
Enable automatic transmit flow control
(XON/XOFF)
Enable automatic receive flow control
(XON/XOFF)
Enable error replacement character
Enable null stripping (remove null bytes)
Enable break replacement character
reserved (set to 0)
RTS Control Mode

Bit 7 Bit 6
0 0
0 1
1 0

Disable
Enable
Input handshaking
Toggling on transmit

6-25

Category 1 -
Function 53H

Flags3:

Note Bit
8 0
9 1-2

Meaning
Enable write infinite time out processing
Read timeout processing

Bit 2 Bit 1
0 0 Invalid input resulting in general

failure
o 1 Normal read timeout processing
1 O Wait for something, read timeout

processing
1 No wait, read timeout proc-

essing
3 reserved (set to 0)
4 reserved (set to 0)
5 reserved (set to 0)
6 reserved (set to 0)
7 reserved (set to 0)

Error Replacement Character
any byte value in the range OOH to FFH. Refer to Note 5: Error
Replacement Character later in this chapter.

Break Replacement Character
any byte value in the range OOH to FFH. Refer to Note 7: Break
Replacement Character later in this chapter.

XON Character
any byte value in the range OOH to FFH. Refer to Note 2: Auto
matic Flow Control later in this chapter.

XOFF Character
any byte value in the range OOH to FFH. Refer to Note 2: Auto
matic Flow Control later in this chapter.

Returns
If the call is made with invalid Parameter/Data Packet values, a
general failure error is reported and none of the Device Control Block
(DCB) characteristics of the device driver for this COM device are
changed.

6-26

Category 1
Function 53H

Remarks

The general Device Control Block (DCB) parameter access functions
(53H and 73H) are used for:

• Automatic transmit flow control (start/stop transmit when
XON/XOFF character received)

• Automatic receive flow control (transmit XON/XOFF when
receive buffer fills/empties)

• Determine XON/XOFF characters
• DTR control mode (enable/disable/input handshaking)
• RTS control mode (enable/disable/input handshaking/toggling on

transmit)
• Output handshaking using CTS/DSR/DCD (control signal deter-

mines when to transmit)
• Input sensitivity using DSR (reception of data controlled by DSR)
• Error replacement character and processing
• Break replacement character and processing
• Null stripping
• Receive/transmit time out processing

If a general failure error is not returned, the device driver will return
valid information in the Data Packet.

The bit fields that are labeled Reserved (returned as 0), will return
the current value (0) for these bits so a Set Device Control Block),
will maintain the current device driver value for these bits. The bits
defined as such will be returned as 0, but applications should not be
written to make that assumption. Applications also should not be
written to assume that the fourth bit combination will never be
returned for DTR Control Mode or Read Timeout processing. Appli
cations should not attempt to manipulate these Reserved bits.

Note: To maintain upward compatibility, the application should do a
Return Device Control Block (DCB) information before the Set func
tion is used. This will allow the reserved (set to 0) bits to be set cor
rectly in a future release of the device driver when these bit positions
may take on a real meaning. By doing the return first the application
can maintain the state of the device driver for a mode that the appli
cation is not aware of.

6-27

Category 1 -
Function 53H

Note 1: Control of DTR and RTS: The device driver allows the caller
to automatically control the setting of Data Terminal Ready (DTR) and
Request To Send (RTS) in many different ways via the RTS Control
Mode and the DTR Control Mode settings of the Set Device Control
Block IOCtl. The application can also request manual control over
these modem control signals. The ways these signals are control
lable are as follows:

Set RTS Control Mode to Toggling on Transmit.

If bits 7,6 of Flags 2 are set to 1, 1 then the device driver is in this
automatic control mode of RTS. When the device driver is initial
ized, the RTS Control Mode is Enable; so initially the device driver
is not in this automatic control mode of RTS.

Note: This mode of operation of the device driver should only be
enabled when the system is attached to devices which will not
present data to the system receive hardware when RTS is on.

In this mode, the device driver will:

6-28

• Always turn on RTS if a break is being transmitted.
• Once data is in the transmit hardware buffer, the device driver

will not turn RTS off until the transmit hardware has emptied
its buffers.

• Turn on RTS (if not already on) if there is data in the device
driver transmit queue OR if there is an outstanding WRITE
request packet and:

The device driver is allowed to transmit even if automatic
transmit/receive flow control (XON/XOFF) is enabled. Still
need to turn on RTS momentarily to transmit a character
immediate if not normally allowed to transmit due to auto
matic transmit/receive flow control (XON/XOFF).

Category 1 -
Function 53H

The device driver is allowed to transmit because it was
not told to behave as if an XOFF had been received (Cate
gory 1 Function 47H). The device driver will still need to
turn on RTS momentarily to transmit a character imme
diate if not normally transmitting due to XOFF flow control
considerations. The device driver will still need to turn on
RTS momentarily to transmit an XON or XOFF due to auto
matic receive flow control if not normally transmitting due
to XOFF flow control considerations.

• Turn off RTS (if not already off) if either of the following condi
tions are true:

No more data in the device driver transmit queue (and no
more data in WRITE requests in progress), no queued
WRITE requests, and the transmit hardware has physically
transmitted (at the physical RS232 interface) all the data
that it has been given.

The device driver is not allowed to transmit due to
transmit/receive flow control (XON/XOFF) being enabled
or due to being asked to behave as if an XOFF had been
received (Category 1 Function 47H). The device driver
still needs to turn on RTS to transmit a character imme
diate or XON/XOFF due to automatic receive flow control
(XON/XOFF). RTS is never turned off until the transmit
hardware has physically transmitted (at the physical
RS232 interface) all the data that it has been given.

• When this function is enabled, the device driver will control
RTS appropriately, as determined by the above description.

• If this function is disabled {by choosing a new RTS Control
Mode), then RTS will be controlled appropriately by the new
RTS Control Mode that is inherently chosen when this RTS
Control Mode is disabled.

• The device driver will NOT examine any other modem control
signals before it turns RTS off or on.

An OPEN request packet will not cause the device driver to
change the RTS Control Mode that the device driver is in. The
device driver will maintain the state of this mode of operation
across OPEN request packets.

6-29

Category 1 -
Function 53H

When the device driver is in the RTS Control Mode toggling on
transmit, then the device driver will not allow the application to
control RTS by the Set Modem Control Signals (Category 1 Func
tion 46H).

Set DTR and/or RTS Control Mode to Input Handshaking.

Setting bits 1,0 of Flags 1 to 1,0 sets the DTR Control Mode to
Input Handshaking. Setting bits 7,6 of Flags 2 to 1,0 sets the RTS
control mode to Input Handshaking. When the device driver is ini
tialized, the RTS and DTR Control Mode is Enable; so initially the
device driver is not in this automatic control mode of RTS and
DTR.

Note: This mode of operation of the device driver should only be
set when there is the possibility of a device driver RECEIVE
QUEUE overrun and the system is attached to data terminal equip
ment which will stop transmitting data when the appropriate
modem control signals are turned off, due to the cabling and the
data terminal equipment characteristics.

Because Input Handshaking mode can be set for either RTS or
DTR or both, the DTR and RTS Control Modes are processed inde
pendently.

In Input Handshaking mode the device driver will:

6-30

• Turn the appropriate modem control signal(s) ON when the
device driver receive queue is less than about half full.

• Turn the appropriate modem control signal(s) OFF when the
device driver receive queue gets close to full.

• When this mode is first set, the device driver will not monitor
the value of the appropriate modem control signal(s) (OTA or
RTS) when the queue size is between approximately half full
and almost full.

• When this function is enabled, the device driver will determine
the correct value of the modem control signal(s) and control
them accordingly.

• If this function is disabled (by choosing a new ATS and/or DTR
Control Mode), ATS and/or OTA will be controlled appropri
ately by the new ATS and/or OTA Control Mode that is inher-

Category 1 -
Function 53H

ently chosen when this RTS and/or DTR Control Mode is
disabled.

• The device driver will NOT examine any other modem control
signals before controlling DTR or RTS due to this mode.

An OPEN request packet will not cause the device driver to
change the RTS and DTR Control Modes that the device driver is
in. The device driver will maintain the state of these modes of
operation across OPEN request packets.

When the device driver is in the RTS Control Mode Input Hand
shaking then the device driver will not allow the application to
control RTS via Set Modem Control Signals (Category 1 Function
46H). When the device driver is in the DTR Control Mode Input
Handshaking, then the device driver will not allow the application
to control DTR via Set Modem Control Signals (Category 1 Func
tion 46H).

Set DTR and/or RTS Control Mode to Enable or Disable.

OPEN processing

• Setting bits 1,0 of Flags 1to0,0 sets the DTR Control Mode
to Disable.

• Setting bits 1,0 of Flags 1 to 0, 1 sets the DTR Control Mode
to Enable.

• Setting bits 7,6 of Flags 2 to 0,0 sets the RTS control mode
to Disable.

• Setting bits 7,6 of Flags 2 to 0, 1 sets the RTS control mode
to Enable.

When the device driver is initialized, the RTS and DTR Control
Mode is Enable, but the value of the modem control signals is
OFF until the port gets an OPEN request packet.

An OPEN request packet will not cause the device driver to
change the RTS and DTR Control Modes that the device driver
is in. The device driver will maintain the state of these modes
of operation across OPEN request packets.

Because Enable or Disable modes can be set for either RTS or
DTR or both, the DTR and RTS Control Modes are processed

6-31

Category 1 -
Function 53H

6-32

independently. The following discussion covers what happens
to RTS. The same discussion also applies to DTR if the DTR
Control Mode is set as described in the RTS discussion.

If the RTS Control Mode is Disable, when the device driver
receives an OPEN request packet and the device is not already
open (from a previous open without a close - First Level Open),
the RTS modem control signal will be kept (turned) OFF during
the OPEN processing. If the RTS Control Mode is Enable then
when the device driver receives an OPEN request packet and
the device is not al ready open (from a previous open without a
close - First Level Open), the RTS modem control signal will be
turned ON during the OPEN processing.

If the RTS Control Mode is set to Disable and the previous
mode was not Disable, the RTS modem control signal is turned
OFF. If the RTS Control Mode is set to Disable and the pre
vious mode was also Disable, this IOCtl has no effect on the
RTS modem control signal.

If the RTS Control Mode is set to Enable and the previous
mode was not Enable, the RTS modem control signal is turned
ON. If the RTS Control Mode is set to Enable and the previous
mode was also Enable, this IOCtl has no effect on the RTS
modem control signal.

The following summarizes the previous discussion:

DTR/RTS:
(IH= Input Handshaking)
FROM(l) TO(l) EFFECT(2)

Disable Disable none
Disable Enable turn ON
Disable IH auto(3)

Enable Disable turn OFF
Enable Enable none
Enable IH auto(3)

IH Disable turn OFF
IH Enable turn ON
IH IH auto(3)

RTS ONLY:
(toggle= toggle on transmit)

Disable toggle auto(4)
Enable toggle auto(4)

IH toggle auto(4)

toggle Disable turn OFF
toggle Enable turn ON
toggle IH auto(3)
toggle toggle auto(4)

(1) - From or To Control Mode.

(2) - Effect on the modem control signal.

Category 1
Function 53H

(3) - Modem control signal controlled automatically (See the
section on Input Handshaking).

(4) - Modem control signal controlled automatically (See the
section on Toggling on Transmit).

Because the initial Control Mode of the device driver is Enable
for RTS and DTR, both modem control signals will be turned
ON when the port is first opened.

If the device driver receives an OPEN request packet and the
device is already open, the device driver does not alter the
value of the RTS and DTR modem control signals, regardless
of the Control Mode.

6-33

Category 1 -
Function 53H

Application control of DTR and RTS.

The application can explicitly turn DTR or RTS ON or OFF
(independently) with the Set Modem Control Signals IOCtl (Cat
egory 1 Function 46H).

If the Control Mode of RTS is not Enable or Disable, the appli
cation may not control RTS with the Set Modem Control
Signals IOCtl because the device driver is controlling the
signal automatically (toggling on transmit or input hand
shaking). If the Control Mode of DTR is not Enable or Disable,
the application may not control DTR with the Set Modem
Control Signals IOCtl because the device drive is controlling
the signal automatically (input handshaking).

CLOSE processing.

6-34

If the device driver receives a CLOSE request packet and the
COM device will still be open (from another open without a
close) then the device driver will not change the values of DTR
or RTS.

If the device driver receives a CLOSE request packet, when
after processing this close request the port will not be open
any more (from another open without a close - Last Level
Close) then, at the end of the CLOSE processing, RTS and DTR
will be turned OFF by the device driver; after waiting the
appropriate amount of time. (See description of CLOSE proc
essing and IOCtl Set Modem Control Signals, Category 1 Func
tion 46H).

Category 1 -
Function 53H

Note 2: Automatic Flow Control. XON/XOFF Characters: If bit O of
Flags 2 is set, the device driver is enabled for automatic transmit flow
control. If bit 1 is set, the device driver is enabled for automatic
receive flow control.

When the device driver is initialized these bits are reset, so initially
the device driver is not enabled for automatic transmit or receive flow
control.

An OPEN request packet will not cause the device driver to change
the enabling or disabling state of automatic transmit/receive flow
control.

An OPEN request packet, when the COM device is not already open
(from a previous open without a close - First Level Open), will cause
the device driver to believe it has not received an XOFF if automatic
transmit flow control is enabled and will cause the device driver to
believe it has not transmitted an XOFF if automatic receive flow
control is enabled.

Automatic Transmit Flow Control (XON/XOFF)

In the discussion that follows it is stated in places that the device
driver will transmit XON or XOFF. There are reasons why the device
driver may not be able to transmit an XON or XOFF (transmitting
break, invalid output handshaking on modem control signals). It is
also stated that the device driver will resume transmitting data.
There are also other potential reasons (not related to automatic
transmit/receive flow control) why that may not be possible. See
Return COM Status IOCtl (Category 1 Function 64H).

When XON and XOFF flow control during transmission is enabled, the
device driver will stop sending data to the transmit hardware when an
XOFF is received, and resume sending data to the transmit hardware
when an XON is received. (Reminder: Transmission may not be pos
sible due to other reasons). The device driver will still transmit char
acters due to the transmit immediate request IOCtl (Category 1
Function 44H). The device driver will still transmit XON and XOFF
due to automatic receive flow control.

6-35

Category 1
Function 53H

When the device driver is in this mode, it will not pass received XON
and XOFF characters to the application. Instead, the device driver
will act upon receiving those characters and throw them away.

The device driver may transmit additional characters before it recog
nizes an XOFF character which it has not read but which may be in
the receive buffer of the hardware. The extent of this scenario will be
minimized, but the combined transmit/receive Advanced BIOS
request block will still be used on systems that support Advanced
BIOS. If the system is relatively slow in responding to interrupts com
pared to the current baud rate, receive buffer overruns may not be
occurring, but the device driver may be apparently slow in
responding to an XOFF character.

If automatic transmit flow control is disabled (after currently enabled)
and transmission was not occurring due to an XOFF being received or
IOCtl Category 1 Function 47H (behave as if XOFF received) being
requested, then transmission will be resumed. (Reminder: trans
mission may not be resumed for other reasons.)

See States of the RS232 device driver for the effect of OPEN request
packets on this mode of the device driver. It is the application's
responsibility not to fully close the port in a way that will cause the
device driver to illegally transmit characters when the port is
re-opened after being fully closed (First Level Open).

Output handshaking using modem control signals is another way that
the device driver can be told to stop transmitting. See Note 3.

Automatic Receive Flow Control (XON/XOFF)

When XON and XOFF flow control during receive is enabled, the
device driver will transmit an XOFF when its receive queue gets close
to full, and an XON when its receive queue is about half full. After the
XOFF is sent, the COM device driver will send no characters until it
sends an XON due to automatic receive flow control. This is to
accommodate those systems that interpret the first character
received after an XOFF as an XON, regardless of what the character
actually is. The device driver will still transmit characters due to the
transmit immediate request (Category 1 Function 44H).

6-36

Category 1
Function 53H

The device driver will not be able to transmit an XOFF or XON if it is
transmitting a break. The device driver will not be able to automat
ically transmit an XOFF or XON if it is enabled for output hand
shaking, with certain modem control signals, and those modem
control signals are not ON. This could cause a deadlock if the device
driver wishes to transmit an XON and it cannot. The device driver
will remember that it wanted to transmit an XOFF or XON and will still
do so when transmit conditions permit; assuming the receive queue
conditions still warrant it.

The device driver will not monitor characters being transmitted by
WRITE request packets to see if any of them are XON or XOFF. The
device driver will also not monitor characters transmitted imme
diately (Category 1 Function 44H). For example, the device driver
will not stop transmitting characters if the application causes the
device driver to explicitly transmit an XOFF.

If automatic receive flow control is enabled (after currently disabled),
the device driver will immediately check the receive queue level to
see if an XOFF needs to be transmitted. An XON is never transmitted
immediately due to this function being enabled. The device driver
will only automatically transmit an XON character after it has auto
matically transmitted an XOFF character.

If automatic receive flow control is disabled (after currently enabled),
and transmission was not occurring due to an XOFF being automat
ically transmitted, the device driver will transmit an XON and trans
mission will be resumed if possible. (Reminder: transmission may
not be taking place for other reasons.)

If the device driver previously automatically transmitted an XOFF, and
a CLOSE request packet is received, when after processing this close
request the port will not be open any more (from another open
without a close), the device driver will automatically transmit an XON
if possible.

See states of the device driver for the effect of OPEN request packets
on this mode of the device driver. It is the application's responsibility
not to fully close the port in a way that will cause the device driver to
illegally transmit characters or the communications link to be in a

6-37

Category 1 -
Function 53H

deadlock state when the port is re-opened after being fully closed
(First Level Open).

Input handshaking using modem control signals is another way that
the device driver can tell another device to stop transmitting. See
Note 1.

XON and XOFF CHARACTERS

The value of these bytes in the device control block determine the
value of the XON and XOFF character that is used for automatic
transmit and receive flow control.

When the XON and XOFF characters are referred to in the Category 1
IOCtl section, the reference is to the value of the XON and XOFF char
acter as determined by this IOCtl.

When the device driver is first initialized, the XON character is 11 H
and the XOFF character is 13H. An OPEN request packet, when the
COM device is not ai ready open, (from a previous open without a
close - First Level Open), will cause the XON character to be set to
11 H and the XOFF character to be set to 13H.

If the XON and XOFF characters are set equal with this IOCtl, the
results are UNDEFINED.

Note 3: Output Handshaking Using CTS, DSR, DCD.: Bits 3, 4, and 5 of
Flags 1 control output handshaking using CTS, DSR, and DCD respec
tively. If the bit is set, output handshaking for the appropriate modem
control signal is enabled.

Output Handshaking mode can be enabled for any combination of
CTS, DSR, or DCD because bit 3, 4, and 5 of Flags 1 are processed
independently.

When the device driver is initialized, bits 3 and 4 of Flags1 are set
and bit 5 of Flags1 is reset; Therefore, so initially the device driver is
enabled for output handshaking using CTS and DSR but disabled for
output handshaking using DCD.

6-38

Category 1
Function 53H

Except for attachment to special devices and/or special cables, output
handshaking using DCD should not be enabled.

Disabling output handshaking using CTS and/or DSR will cause unex
pected results when the system is attached to data terminal devices
or data communications devices that toggle CTS and/or DSR in order
to control the ability of the system to transmit data.

If the device driver is enabled for this mode of operation, the device
driver will be affected in the following manner if the appropriate
modem signal(s) are OFF:

• The device driver will be unable to move data from the device
driver transmit queue to the transmit hardware.

• The device driver will be unable to transmit a character imme
diately (Category 1 Function 44H) so the character is remembered
by the device driver.

• The device driver will be unable to automatically transmit XONs
and XOFFs. The device driver may wish to transmit XONs and
XOFFs as a result of automatic receive flow control being
enabled.

• The device driver will still generate a break immediately if
requested.

• The value of CTS, DSR, and DCD do not affect how the device
driver controls RTS and DTR.

An OPEN request packet will not cause the device driver to change
the value of bits 3, 4, and 5 of Flags 1. The device driver will maintain
the state of this mode of operation across OPEN request packets.

On devices with a transmit holding register and transmit shift reg
ister, the transmit holding register will always be given another char
acter to transmit when it empties (even though a character may still
be in the transmit shift register), unless the device driver determines
that is not allowed to transmit any more.

The device driver will always attempt to detect a change in the
modem status signals (CTS, DSR, DCD) before transmitting more
data. This requires bypassing the natural priority of the current
ASYNC hardware and requires additional complexity in the Advanced

6-39

Category 1 -
Function 53H

BIOS implementation. This feature prevents a temporary elongation
of interrupt latency from not allowing the device driver to recognize a
change in a modem control signal. (The modem control signal
change happened many character times before the transmit hard
ware is requesting that another character be given to it).

Note 4: Input Sensitivity Using DSR.: Bit 6 of Flags 1 controls input
sensitivity using DSR. If the bit is set, input sensitivity using DSR is
enabled.

When the device driver is initialized, bit 6 of Flags 1 is set; so initially
the device driver is enabled for input sensitivity using DSR.

Note: Disabling input sensitivity using DSR will cause unexpected
results when the system is attached to data terminal devices or data
communications devices that toggle DSR when they generate spu
rious data that they do not wish the system to receive.

If the device driver is enabled for this mode of operation, the device
driver will throw away all data input from the receive hardware if DSR
is oft

If the device driver processes a change in the DSR modem control
signal from ON to OFF or OFF to ON at the same time that it inputs a
character from the receive hardware, the device driver will still
accept that last character(s). This will prevent a temporary
elongation of interrupt latency from causing the device driver to
discard a valid character(s). However this could cause the device
driver to attempt to process invalid data for one service period of the
receive hardware. This requires that the change in the modem
control signal gets processed before the device driver attempts to
receive data from the receive hardware (See Note 3); or that the
received data is saved until a change in modem status (during the
same hardware service instance) can be determined.

An OPEN request packet will not cause the device driver to change
the value of bit 6 of Flags 1. The device driver will maintain the state
of this mode of operation across OPEN request packets.

6-40

Category 1
Function 53H

Note 5: Error Replacement Character: Bit 2 in Flags 2 controls the
enabling of error replacement character processing. If the bit is set,
the error replacement character processing is enabled.

When the device driver is initialized this bit is reset, so initially the
device driver is not enabled for the error replacement character. An
OPEN request packet, when the COM device is not al ready open
(from a previous open without a close - First Level Open) will cause
this bit to be reset, disabling error replacement character processing.

When the device driver is initialized, the error replacement character
is OOH. An OPEN request packet, when the COM device is not already
open (from a previous open without a close) will cause the error
replacement character to be set back to a OOH.

If error replacement character processing is disabled, the following
applies:

• If a parity or framing error occurs and if the character that had
the error is available in the receive hardware buffer, it is placed
in the device driver receive queue.

• If a hardware or receive queue overrun occurs then nothing
special is placed in the receive queue to designate an overrun.

If error replacement character processing is enabled, the following
applies:

• If a parity or framing error occurs, the error replacement char
acter is placed in the device driver receive queue. (The char
acter in the receive hardware buffer, if it was available, is not
placed in the receive queue.)

• If a hardware buffer overrun occurs, the error replacement char
acter is placed in the device driver receive queue to mark the
position that a receive overrun occurred. If valid data is in the
receive hardware buffer, it is still placed in the device driver
receive queue. The processing of the valid data takes place after
the hardware buffer overrun condition is recorded in the device
driver receive queue.

• If a device driver receive queue overrun occurs, the last char
acter in the receive queue is replaced with the error replacement
character. This allows the application to know the position of

6-41

Category 1 -
Function 53H

where the error occurred. This error replacement (if enabled)
will always take precedence over an error replacement or break
replacement event that occurred at the same character time.

Regardless of whether error replacement character processing is
enabled, null stripping and checking for XON/XOFF characters will
not occur if the character had an error.

This IOCtl can be used to change the error replacement character by
changing the byte representing the error replacement character.

Note 6: Null Stripping: Bit 3 in Flags 2 controls the enabling of null
stripping processing. If the bit is set, null stripping processing is
enabled.

When the device driver is initialized this bit is reset, so initially the
device driver is not enabled for null stripping. An OPEN request
packet, when the COM device is not already open (from a previous
open without a close - First Level Open) will cause this bit to be reset;
disabling null stripping.

If the device driver is enabled for null stripping when characters are
read in from the receive hardware any (non error or non break) char
acters with a value of OOH are thrown away, are not checked even if
the XON or XOFF character has been set to OOH, and are not placed in
the device driver receive queue.

Note: Simultaneously setting the XON or XOFF character to OOH, ena
bling automatic transmit flow control, and enabling null stripping may
cause unexpected results but is not considered an error condition by
the device driver error checking logic.

Note 7: Break Replacement Character: Bit 4 in Flags 2 controls the
enabling of break replacement character processing. If the bit is set,
the break replacement character processing is enabled.

When the device driver is initialized this bit is reset, so initially the
device driver is not enabled for the break replacement character. An
OPEN request packet, when the COM device is not already open
(from a previous open without a close - First Level Open) will cause

6-42

Category 1 -
Function 53H

this bit to be reset, disabling break replacement character proc
essing.

When the device driver is initialized, the break replacement character
is OOH. An OPEN request packet, when the COM device is not already
open (from a previous open without a close - First Level Open) will
cause the break replacement character to be reset back to a OOH.

If break replacement character processing is disabled, the device
driver will not place any character in the device driver receive queue
when it detects a break condition on the line. A detected break condi
tion has no effect on XON/XOFF detection.

If break replacement character processing is enabled, when the
device driver detects a break condition, it will place the break
replacement character in the device driver receive queue.

If break replacement character processing is enabled, null stripping
and checking for XON/XOFF characters will not operate on the break
replacement character.

This IOCtl can be used to change the break replacement character by
changing the byte representing the break replacement character.

If a parity or framing error is generated due to the reception of a
break, error replacement processing is not done (except for the
overrun condition), break replacement processing is done.

Note 8: Write Timeout: Bit 0 in Flags3 controls the characteristics of
Write timeout. processing. If the bit is 0, Write timeout processing
uses the value in the Write Timeout word in the device control block.
If the bit is 1, Write timeout processing is infinite time out.

The value in the Write Timeout word is in .01 second units (based on
0 where, 0 = .01 seconds). The device driver is considered doing
normal write timeout processing when the Write Timeout word is
used for write timeout processing.

During normal write timeout processing, if the device driver does not
give ANY data to the transmit hardware (from the transmit queue)

6-43

Category 1
Function 53H

within the period of time specified by the Write Timeout word (due to
some reason that prevents the device driver from transmitting data),
the request will be completed. The accuracy of the time out period
MAY be determined by the request packet being blocked in the
device driver and how long it takes for the thread to be dispatched
once it is made ready by the time out period expiring; OR the accu
racy of the time out period MAY be determined by the accuracy of the
device driver timer tick processing. If any data had been given to the
transmit hardware in that time out period, the specified period of time
will be waited for again, to see if any more data had been trans
mitted.

If the time out period is changed by this IOCtl (or to infinite time out),
the new time may take effect immediately or may take effect after the
next character is written.

During write infinite time out processing, the request will not com
plete until all the data from the request has been given to the transmit
hardware. The thread of the Write request will not return to the
system until the request completes. The device driver will check to
see if an IOCtl has changed the write timeout processing character
istics at least every minute. This could occur almost immediately
(accuracy MAY be determined by the request packet being blocked
and/or by device driver timer ticks). This will insure that the device
driver periodically checks to see if write infinite time out processing
had been changed to normal write timeout processing.

As discussed above, the write timeout characteristics can be changed
in the middle of the processing of a write request and the new time
out attributes is guaranteed to eventually take effect.

When the device driver initializes, normal write timeout processing is
in effect.

When the device driver receives an OPEN request packet for the port
and the port is not already open (from a previous open without a
matching close - First Level Open), the value in the write timeout
word is set to 1 minute. The current write timeout processing charac
teristics (normal or infinite) is not affected.

6-44

Category 1
Function 53H

Note 9: Read Timeout: Bits 2, 1 of flags 3, control the Read timeout
processing characteristics of the device driver. The three possible
types of Read timeout processing are:

• Normal (Bits 2, 1 = 0, 1)
• Wait For Something (Bits 2, 1 = 1,0)
• NO WAIT (Bits 2,1 = 1,1)

The value in the Read Timeout word is in .01 second units (based on
0, where 0 = .01 seconds). The device driver uses the value in the
Read timeout word for Normal and Wait For Something Read timeout
processing. The accuracy of the time interval MAY be determined by
the request being blocked in the device driver and/or by device driver
timer ticks.

However, in the following two cases (of data being received), the
current interval of time will continue to be waited on without starting
to wait from the beginning of the interval again:

1. if input sensitivity using DSR is ENABLED and the value of the
DSR modem control signal causes input data to be thrown away.
Refer to Note 4: Input Sensitivity using DSR earlier in this
chapter.

2. if null stripping is ENABLED and a null character is stripped.
Refer to Note 6: Null Stripping earlier in this chapter.

If the device driver is doing Normal Read time out processing, the
device driver will wait as long as the value in the Read timeout word
says to wait. The request will be completed after that interval of time
elapses, if no more data has been received for the request. If any
data is received by the device driver (from the receive hardware) for
the request (including XON/XOFF characters), the specified period of
time will be waited on again (for more data to arrive).

If the device driver is doing NO WAIT read timeout processing, the
device driver will not wait for any data to be available in the receive
queue. When the device driver begins to try to move data from the
receive queue to the request, the request will complete. Whatever
data is available in the receive queue at that time is the amount of
data that will be moved to the request.

6-45

Category 1 -
Function 53H

If the device driver is doing Wait For Something read timeout proc
essing, the device driver will process the request initially as if it had
no wait time out processing. If no data was available at the time the
request would have completed due to NO WAIT processing, the
request is not completed. Instead, the request waits for some data to
be available before completing the request. However, the device
driver does enter Normal read timeout processing for this request.
Therefore, if no data is available after the Normal timeout processing
interval then the request will be completed anyway. The request will
never wait any longer then it would have due to Normal read timeout
processing.

The read timeout processing characteristics that apply to a given
read request is not determined until the device driver begins proc
essing that request. Once the device driver begins processing that
request, a change to the read timeout processing characteristics of
the device driver between Wait For Something and Normal time out
processing may or may not take effect for the current read request
being processed. If the time out period is changed by this IOCtl, the
new time out period may take effect immediately, or it may take effect
after the next character is received from the receive hardware.

When the device driver initializes, normal read timeout processing is
in effect.

When the device driver receives an OPEN request packet for the port
and the port is not already open (from a previous open without a
matching close - First Level Open), the value in the write timeout
word is set to 1 minute and normal read timeout processing charac
teristics is put into effect.

6-46

Purpose
Return Baud (bit) Rate

Parameter Packet Format
None. Packet pointer must be NULL.

Data Packet Format

I Fleld

Bit Rate

Where

Bit Rate

Category 1 -
Function 61 H

Length

WORD

The binary integer representing the actual baud (bit) rate of the
COM device in bits per second.

Returns
If the call is made with an invalid Parameter Packet value then a
general failure error is reported and valid information is not returned
in the Data Packet.

Remarks
If a general failure error is not returned then the device driver will
return the current baud (bit) rate of the COM device.

6-47

Category 1 -
Function 62H

Purpose
Return Line Characteristics (stop bits, parity, data bits, break)

Parameter Packet Format
None. Packet Pointer must be NULL.

Data Packet Format

Field

Data Bits

Parity

Stop Bits

Transmitting Break

Where

Data Bits

Length

BYTE

BYTE

BYTE

BYTE

See set function 42H (Set Line Characteristics)

Parity
See set function 42H (Set Line Characteristics)

Stop Bits
See set function 42H (Set Line Characteristics)

Transmitting Break
0 means not currently transmitting break. 1 means currently trans
mitting break.

Returns
If the call is made with an invalid Parameter Packet value then a
general failure error is reported and valid information is not returned
in the Data Packet.

6-48

Remarks

Category 1 -
Function 62H

If a general failure is not returned, the device driver will return the
line characteristics as defined.

6-49

Category t -
Function 64H

Purpose
Return COM Status

Parameter Packet Format
None. Packet pointer must be NULL.

Data Packet Format

I Fleld

COM Status Byte

Where

COM Status Byte

1 The condition is true
0 The condition is iaise

Note Bit Meaning

Length

BYTE

3 0
3 1
3 2
1 3
2 4

Tx waiting for CTS to be turned ON
Tx waiting for DSR to be turned ON
Tx waiting for DCD to be turned ON
Tx waiting because XOFF received
Tx waiting because XOFF transmitted

5 5
6 6
4 7

Tx waiting because break being transmitted
Character waiting to transmit immediately
Receive waiting for DSR to be turned ON

Tx (transmit) status indicates why we may not be transmitting;
regardless of whether there is data to transmit. However the
device driver must be enabled for the given condition (for
example, enabled for output handshaking for the modem control
signal in question) for the status to reflect that the device driver
would be waiting for the given condition to transmit.

For example, 00000001 means the device driver will put receive
characters in the device driver receive queue, the device driver is

6-50

Category 1
Function 64H

not waiting to transmit a character immediately (Category 1 Func
tion 44H), and we will not transmit characters from the device
driver transmit queue because we are using CTS for output hand
shaking and CTS does not have the proper value.

Note:
1. This occurs because the proper conditions when the device

driver is enabled for automatic transmit flow control
(XON/XOFF), or the device driver is not enabled for automatic
transmit flow control (XON/XOFF) and the device driver is told
to behave as if an XOFF had been received (Category 1 Func
tion 47H).

Characters will still be transmitted immediately (Category 1
Function 44H) and the device driver can still automatically
transmit XONs and XOFFs because of automatic receive flow
control (XON/XOFF) when the device driver is in this state.

2. This is because of the proper conditions when the device
driver is enabled for automatic receive flow control.

Characters will still be transmitted immediately (Category 1
Function 44H) and the device driver can still automatically
transmit XONs because of the automatic receive flow control
when the device driver is in this state.

3. See Set Device Control Block Note 3 (Category 1 Function
53H).

4. See Set Device Control Block Note 4 (Category 1 Function
53H).

5. See Set break on (Category 1 Function 4BH).
6. See Transmit Byte Immediate (Category 1 Function 44H).

Returns
If the call is made with an invalid Parameter Packet value a general
failure error is reported, and valid information is not returned in the
Data Packet.

Remarks
If a general failure error is not returned the device driver will return
the COM device current status.

6-51

Category · 1 -
Function 65H

Purpose
Return Transmit Data Status

Parameter Packet Format
None. Packet Pointer must be NULL.

Data Packet Format

Fie Id

Transmit Status

Where

Transmit Status

Length

BYTE

Is returned as bit significant values. If the bit is 1, the condition is
true. The bit is O if the condition is false. The number at the
beginning of the description is the bit position number. The bit
positions go from least to most significant.

O - WRITE request packets in progress or queued.
1 - Data in the device driver transmit queue.
2 - The transmit hardware is currently transmitting data.
3 - Character waiting to be transmitted immediately.
4 - Waiting to automatically transmit an XON.
5 - Waiting to automatically transmit an XOFF.
6 - undefined
7 - undefined

Returns
If the call is made with an invalid Parameter Packet value a general
failure error is reported and valid information is not returned in the
Data Packet.

6-52

Remarks

Category 1 -
Function &SH

If a general failure error is not returned the device driver will return
the current transmit status of the COM device.

6-53

Category 1 -
Function 66H

Purpose
Return Modem Control Output Signals

Parameter Packet Format
None. Packet pointer must be NULL.

Data Packet Format

Fie Id

Modem Control Output Signals

Where

Modem Control Output Signals

Length

BYTE

A bit value of 1 means the condition is ON. A bit value of 0 means
the condition !s OFF.

Bit Meaning
0 Data terminal ready (DTR)
1 Request to send (RTS)
2 to 7 Undefined

Returns
If the call is made with an invalid Parameter Packet value a general
failure error is reported and valid information is not returned in the
Data Packet.

Remarks
If a general failure error is not returned, the device driver will return
the current modem control output signals of the COM device.

6-54

Purpose

Category 1 -
Function 67H

Return Current Modem Control Input Signals

Parameter Packet Format

Fie Id Length

Modem Control Input Signals BYTE

Data Packet Format
None. Packet pointer must be NULL.

Where

Modem Control Input Signals
A bit value of 1 means the condition is ON. A bit value of 0 means
that the condition is OFF.

Bit Meaning
0 to 3 Undefined
4 Clear To Send (CTS)
5 Data Set Ready (DSR)
6 Ring Indicator (RI)
7 Data Carrier Detect (DCD)

Returns
If the call is made with an invalid Parameter Packet value a general
failure error is reported and valid information is not returned in the
Data Packet.

Remarks
If a general failure error is not returned, the device driver will return
the current modem control input signals of the COM device.

6-55

Category ·1
Function 68H

Purpose
Return Number of Characters in the Receive Queue

Parameter Packet Format
None. Packet pointer must be NULL.

Data Packet Format

Fie Id

Number of Characters Queued

Size of Receive Queue

Where

Number of Characters Queued

Length

WORD

WORD

Binary integer with the number of received characters in the
device driver receive queue. The device driver receive queue is a
memory buffer in between the memory pointed to by the READ
request packet and the receive hardware for this COM device.
The application may not assume that there are no unsatisfied
READ requests if there are characters in the device driver receive
queue. The behavior of data movement between the READ
request and the receive queue may change from release to
release of the device driver. Applications should not be written to
have a dependency on this information.

Size of Receive Queue
Binary integer with the size of the device driver receive queue.
Applications should be written to be independent of the receive
queue being of a fixed size. The information in this field allows
the application to get the size of the receive queue. The current
size of the receive queue is approximately 1 K bytes but is subject
to change.

Using this information, the application could be written to avoid
device driver receive queue overruns. This could be done by

6-56

Category 1 -
Function &SH

using an application to application block protocol with the system
that the application is communicating with.

Returns
If the call is made with an invalid Parameter Packet value, a general
failure error is reported and valid information is not returned in the
Data Packet.

Remarks
If a general failure error is not returned, the device driver will return
the information.

6-57

<;ategory · t -
Functi~n.&9H

Purpose
Return Number of Characters in Transmit Queue

Parameter Packet Format
None. Packet pointer must be NULL.

Data Packet Format

Fie Id

Number of Characters Queued

Size of Transmit Queue

Where

Number of Characters Queued

Length

WORD

WORD

Binary integer with the number of characters ready to be trans
mitted in the device driver transmit queue. The device driver
transmit queue is a memory buffer between the memory pointed
to by the WRITE request packet and the transmit hardware for this
COM device. If the transmit queue is empty, the application may
not assume that all WRITE requests have completed or that no
WRITE requests are outstanding. The behavior of data movement
between the WRITE request and the transmit queue may change
from release to release of the device driver. Applications should
not be written to be dependent on this information.

Size of Transmit Queue
Binary integer with the size of the device driver transmit queue.
Applications should be written to be independent of the transmit
queu~ being of a fixed size. The information in this field allows
the application to get the size of the transmit queue. The size of
the transmit queue is 128 bytes. Applications should not be
written to have a dependency on this value as it is subject to
change.

6-58

Returns

Category 1 -
Function 69H

If the call is made with an invalid Parameter Packet value, a general
failure error is reported and valid information is not returned in the
Data Packet.

Remarks
If a general failure error is not returned, the device driver will return
the information.

6-59

Category 1 -
Function &DH

Purpose
Return COM Error (retrieve and then clear the COM device error
information)

Parameter Packet Format
None. Packet pointer must be NULL.

Data Packet Format

Field

COM Error Word (COMERR)

Where

COM Error

Length

WORD

The appropriate bits in the COM Error Word are sat by the device
driver when the events described below occur. The COM error
word is not cleared unless this function is performed by the device
driver or an OPEN request packet is received by the device driver
and the COM device is not al ready open (from a previous open
without a close first level open). See Note 6 of Set Device Control
Block (Category 1 Function 53H).

Bit Meaning
0 Receive queue overrun. No room in the device driver

receive queue to put a character read in from the
receive hardware.
Receive hardware overrun. A character was not read
from the hardware before the next character arrived
causing a character to be lost.

2 The hardware detected a parity error.
3 The hardware detected a framing error.
4 to 15 Undefined

6-60

Returns

Category 1 -
Function &DH

If the call is made with an invalid Parameter Packet value, a general
failure error is reported, valid information is not returned in the Data
Packet, and the COM error word is not cleared.

Remarks
If a general failure error is not returned, the device driver will return
and clear the COM device error information.

6-61

Category 1 -
Function 72H

Purpose
Return COM Event Information (retrieve and then clear the COM
device event word)

Parameter Packet Format
None. Packet pointer must be NULL.

Data Packet Format

I Field

COM Event Word

Where

COM Event Word

Length

WORD

The appropriate bits in the COM Event Word are set by the device
driver when the following events occur:

Note: The COM Event Word is not cleared unless this function is
performed by the device driver or an OPEN request packet is
received by the device driver and the COM device is not already
open (from a previous open without a close) (first level open).

Bit Meaning
0 Set when any character is read from the COM device

receive hardware and placed in the receive queue.
1 Undefined
2 Set when the last character in the device driver transmit

queue is sent to the COM device transmit hardware.
This does not mean that there is no data to send in any
outstanding WRITE requests.

3 Set when the Clear to Send (CTS) signal changes state.
4 Set when the Data Set Ready (DSR) signal changes

state.
5 Set when the Data Carrier Detect (DCD) signal changes

state.
6 Set when a break is detected.

6-62

Category 1
Function 72H

7 Set when a parity, framing or overrun error occurs (an
overrun can be a receive hardware overrun or a receive
queue overrun).

8 Set when trailing edge of Ring Indicator is detected.
9 to 15 Undefined

Returns
If the call is made with an invalid Parameter Packet value, a general
failure error is reported, valid information is not returned in the Data
Packet, and the event word is not cleared.

Remarks
If a general failure is not returned, the device driver will return the
current value of the event word and then clear it.

6-63

Category·· 1· -
Function 73H

Purpose
Return Device Control Block (DCB) Information

Parameter Packet Format
None. Packet pointer must be NULL.

Data Packet Format

Fie Id

Write Timeout

Read Timeout

Flags1

Flags2

Flags3

Error Replacement Character

Break Replacement Character

XON Character

XOFF Character

Where

Write Timeout

Length

WORD

WORD

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

specifies the time period used for write timeout processing. The
value is in .01 second units (based on zero, where zero equals .01
seconds). Refer to Note 8: Write Timeout earlier in this chapter.

Read Timeout
specifies the time period used for read timeout processing. The
value is in .01 second units (based on zero, where zero equals .01
seconds). Refer to Note 9: Read Timeout earlier in this chapter.

6-64

Category 1 -
Function 73H

Flags1

Bit Meaning
0-1 DTR Control Mode

Bit 1 Bit 0
O O Disable
O 1 Enable
1 0 Input handshaking

2 Reserved (returned as zero)
3 Enable output handshaking using CTS
4 Enable output handshaking using DSR
5 Reserved (returned as zero)
6 Enable input sensitivity using DSR
7 Reserved (returned as zero)

Flags2

Bit Meaning
0 Enable automatic transmit flow control (XON/XOFF)
1 Enable automatic receive flow control (XON/XOFF)
2 Enable error replacement character
3 Enable null stripping (remove null bytes)
4 Enable break replacement character
5 Reserved (returned as zero)
6-7 RTS Control Mode

Bit 7 Bit 6
O O Disable
O 1 Enable
1 0 lnputhandsha~ng

1 1 Toggling on transmit

6-65

Category 1 -
Function 73H

Flags3

Bit Meaning
O Enable write infinite timeout processing
1-2 Read timeout processing

6-66

Bit 2 Bit 1

Category 1 -
Function 73H

0 1 Normal read timeout processing
1 0 Wait for something, read timeout proc-

essing
1 1 No wait, read timeout

processing
3 Reserved (returned as zero)
4 Reserved (returned as zero)
5 Reserved (returned as zero)
6 Reserved (returned as zero)
7 Reserved (returned as zero)

See function 53H, Set Device Control Block (DCB) for field defi
nitions.

Error Replacement Character
any byte value in the range OOH to FFH. Refer to Note 5: Error
Replacement Character earlier in this chapter.

Break Replacement Character
any byte value in the range OOH to FFH. Refer to Note 7: Break
Replacement Character earlier in this chapter.

XON Character
any byte value in the range OOH to FFH. Refer to Note 2: Auto
matic Flow Control earlier in this chapter.

XOFF Character
any byte value in the range OOH to FFH. Refer to Note 2: Auto
matic Flow Control earlier in this chapter.

Returns
If the call is made with an invalid Parameter Packet value, a general
failure error is reported and valid information is not returned in the
Data Packet.

6-67

Category 1 -
Function 73H

Remarks

The general Device Control Block (DCB} parameter access functions
(53H and 73H} are used for:

• Automatic transmit flow control (start/stop transmit when
XON/XOFF character received}

• Automatic receive flow control (transmit XON/XOFF when
receive buffer fills/empties}

• Determine XON/XOFF characters
• DTR control mode (enable/disable/input handshaking}
• RTS control mode (enable/disable/input handshaking/toggling on

transmit}
• Output handshaking using CTS/DSR/DCD (control signal deter-

mines when to transmit}
• Input sensitivity using DSR (reception of data controlled by DSR}
• Error replacement character and processing
• Break replacement character and processing
• Null stripping
• Receiveitransmit timeout processing

If a general failure error is not returned, the device driver will return
valid information in the Data Packet.

Note: To maintain upward compatibility, it is the responsibility of the
application to do a Return Device Control Block (DCB} Information
BEFORE doing a Set Device Control Block (DCB}. The appropriate
information in the returned control block should be modified by the
application and then the Set function can be done.

6-68

Category 3 Pointer Draw Control IOCtl Commands

Following is a summary of Category 3 descriptions:

Function
72H

Description
Get pointer draw address

6-69

Category 3 -
Function 72H

Purpose
Get pointer draw address

Parameter Packet Format
None

Data Packet Format

Fie Id

Return Code

Pointer Draw Routine Entry Point
(Selector:Offset)

Pointer Draw Routine Data Segment
Selector

Returns
Information in data packet defined above.

Remark

Length

WORD

DWORD

WORD

The call is used by the mouse subsystem to obtain the entry point
address of the pointer draw routine. The pointer draw routine is con
tained within the pointer draw device driver. It is called by the mouse
device driver to update the pointer image on the screen. The far
address returned by function code 72H is passed by the mouse sub
system to the mouse device driver through an IOCtl interface (refer
ence the mouse control IOCtl commands, category 07H). The mouse
device driver saves the far address passed and uses it when calling
the pointer draw routine.

This function is supported by the pointer draw device driver.

6-70

Category 4 Keyboard Control IOCtl Commands

Following is a summary of Category 4 descriptions:

Function
50H
51H
52H
53H
54H
55H
56H
57H
58H
5BH
5CH
71H
72H
73H
74H
75H
76H
77H
78H
79H

Description
Set code page
Set input mode (default ASCII)
Set interim character flags
Set shift state
Set typematic rate and delay
Notify of change of foreground session
Set session manager Hot Key
Set KCB
Set code page ID
Reserved
Set NLS & custom code page
Get input mode
Get interim character flags
Get shift state
Read character data record(s)
Peek character data record
Get session manager Hot Key
Get keyboard type
Get code page ID
Translate scan code to ASCII

6-71

Category···4 -
Function 50H

Purpose
Set Code Page

Parameter Packet Format

Fie Id

Pointer to Code Page

Data Packet Format
None

Where

Code Page Format

Length

DWORD

has the following format where there are 127 copies of the KeyDef
rec below (includes 1 for each possible scan code that may be
returned fiom the keyboard). Not aii entries are used; unused
entries are zero. The entries are in scan code order, based on the
remapped scan codes returned by the keyboard controller when it
is in the DOS execution environment. The DOS execution environ
ment translates keyboard scan codes to scan codes based on the
position of the keys as they are on the standard PC keyboard (plus
additional keys on the Enhanced Keyboard). The DOS execution
environment also converts key "break" codes to the equivalent
scan code with the high order bit turned on (that is, adds 128 to
the code).

6-72

Category 4 -
Function SOH

XlateTable:
XHeader
Key De fl
KeyDef2
KeyDef3

XHeader
KeyDef
Key Def
Key Def

KeyDef 127 KeyDef
AccentTbl AccentTable

End XlateTable
XHeader:

XTabl eID
XTableFlagsl

: Word [Code Page ID
: Rec[Word Width]
: The following three bits determine which

shift key or key combination affects CHAR3

ShiftAlt
AltGrafL
AltGrafR
ShiftLock
DefaultTable
ShiftToggle

of each KeyDef.
Bit 0 [Use Shift-Alt instead of Ctrl-Alt]
Bit 1 [Use left Alt key as Alt-Graphics]
Bit 2 [Use right Alt key as Alt-Graphics]
Bit 3 [Treat Caps Lock As Shift Lock]
Bit 4 [Default table for the Lang.]
Bit S [Toggle or Latch ShiftLock]

When 1 toggle else latch
AccentPass Bit 6 [Pass accent and non-accent key through]

When 1 pass on accent keys and beep,
else beep only.

The following four bits determine which
shift key or key combination causes Chars
to be used in each KeyDef.

CapsShift Bit 7 [Caps-Shift uses CHARS]
Reserved Bit 8-10
Reserved Bit 11 - 15

EndRec XtableFlagsl
XTableFlags2 : Rec[Word Width]

Reserved : Bit 0 - lS
EndRec XtableFlags2
KbdType : Word [Keyboard type, see below]
KbdSubType : Word [Reserved.]
XtableLen : Word [Length of Table]
EntryCount : Word [Number of KeyDef entries]

6-73

Category 4 -
Function SOH

EntryWidth
Country
Tabl eTypelD
Reserved

Word [Width of KeyDef entries]
Word [Language ID]
Word [Identifies the table type]
le Words [Reserved.]

End XHeader
KeyDef = Rec

XlateOp = Rec [word field]
AccentFlags 7 Bits
KeyType : 9 bits

Charl Byte
Char2 Byte
Char3 Byte
Char4 Byte
Char5 Byte

EndRec KeyDef
AccentTable = Rec

AccentEntryl : AccentEntry
AccentEntry2 : AccentEntry

AccentEntry7 : AccentEntry
EndRec AccentTable

[127 copies of this record.]
[Translate operation specifier.]
[See notes 1 and 8, below.]
[Note 2, below.]
[Use depends on KeyType,
[Use depends on KeyType,
[Use depends on KeyType,
[Use depends on KeyType,
[Use depends on KeyType,

below.]
below.]
below.]
below.]
below.]

[Table of accent key definitions.]

AccentEntry = Rec [Accent entry definition. See notes 1 and 9.]
NonAccent 2 Bytes [Char/scan code when not used as accent]
CtlAccent : 2 Bytes [Char/scan code when used with CTL.]
AltAccent : 2 Bytes [Char/scan code when used with ALT.]
Mapl 2 Bytes [From char to char for translation.]
Map2 2 Bytes

Map2e 2 Bytes
EndRec AccentEntry

TableTypelD
1st byte
type
eex

os12 e1x

6-74

2nd byte
sub-type
Reserved
eex

Category 4 -
Function SOH

Notes about the Code Page

1. The AccentFlags field of the KeyDef record has seven flags that
are individually set if a corresponding entry in the accent table
applies to this scan code. If the key pressed immediately before
the current one was an accent key, and the bit for that accent is
set in the AccentFlags field for the current key, the corresponding
AccentTable entry is searched for the replacement character
value to use. If no replacement is found the "not-an-accent" beep
is sounded and the accent character and current character are
passed as two separate characters. Also see note 8.

2. The KeyType field of the KeyDef record currently has the fol
lowing values defined. The remaining values up to 1 FH are unde
fined. In the following table the effect of each type of shift is
defined. Except where otherwise noted, when no shifts are
active, Char1 is the translated character. References to undefined
are clarified in note 3 below. Note that either the ALT, ALTC/S/G
or both may be present on a keyboard based on the AltGrafL and
AltGrafR bits in the XTableFlags1 flagword in the table header.

• 01H) AlphaKey - Alphabetical character key:

SHIFT - Uses Char2 (If CAPSLOCK, uses Charl).
CAPSLOCK- Uses Char2 (If SHIFT, uses Charl).
CTL - Set standard 11 control 11 code for this key's

Charl value (see note 4 below).
ALT - Standard 11 extended 11 code (see note 7).

ALTC/S/G - Uses Char 3 if it is not zero

• 02H) SpecKey - Special non-alphabetical character key, no
CAPSLOCK or Alt:

SHIFT - Uses Char2.
CAPSLOCK- No effect, only depends on SHIFT or CTL.
CTL - See note 4 below.
ALT - Marked undefined.

ALTC/S/G - Uses Char 3 if it is not zero

• 03H) SpecKeyC - Special non-alpha character key with
CAPSLOCK See note 15.

6-75

Category 4 -
Function 50H

6-76

SHIFT - Uses Char2 (If CAPSLOCK, uses Charl).
CAPSLOCK- Uses Char2 (If SHIFT, uses Charl).
CTL - See note 4 below.
ALT - Use Char4 if not zero.

ALTC/S/G - Uses Char 3 if it is not zero

• 04H) SpecKeyA - Special non-alpha character key, with ALT
(no CAPSLOCK):

SHIFT - Uses Char2
CAPSLOCK- No effect, only depends on SHIFT, CTL or ALT.
CTL - See note 5 and note 9 below.
ALT - See note 7 below.

ALTC/S/G - Uses Char 3 if it is not zero

• OSH SpecKeyCA - Special non-alpha character·key, with
CAPSLOCK & Alt:

SHIFT - Uses Char2 (If CAPSLOCK, uses Charl).
CAPSLOCK- Uses Char2 (If SHIFT, uses Charl).
CTL - See note 4 below.
ALT - See note 7 below.

ALTC/S/G - Uses Char 3 if it is not zero

• 06H) FuncKey - Function keys (Char1 = "n" in "Fn", Char2
ignored, sets "extended" codes 58+Char1 if no shift or if F11
or F12, uses 139 and 140).

SHIFT - Sets "extended" codes 83+Charl;
Fll and F12 use 141 and 142 respectively

CAPSLOCK- No effect on function keys.
CTL - Sets "extended" codes 93+Charl;

Fll and F12 use 143 and 144 respectively
ALT - Sets "extended 11 codes 103+Charl;

Fll and F12 use 145 and 146 respectively.

ALTC/S/G - Uses Char 3 if it is not zero

Category 4 -
Function SOH

• 07H) PadKey - Keypad keys (see note 5 for definition of
Char1, and note that non-shifted use of these keys is fixed to
the "extended" codes):

SHIFT - Uses Char2 {Unless NUMLOCK, then see note 5).
CAPSLOCK- No effect on pad keys {NUMLOCK does, note 5).
CTL - Sets "extended" codes {see note 5).
ALT - Used to "build" a character {see note 5).

ALTC/S/G - Uses Char 3 if it is not zero

• 08H) SpecCtlKey - "Action" keys that do special things with
Ctrl down:

SHIFT - No effect on these keys.
CAPSLOCK- No effect on these keys.
CTL - Uses Char2.
ALT - Marked undefined.

ALTC/S/G - Uses Char 3 if it is not zero

• 09H) PrtSc - Print Screen key (sets Char1 normally):

SHIFT - Signal the Print Screen function.
CAPSLOCK- No effect on this key.
CTL - Sets extended code and signals

the Print Echo function.
ALT - Marked undefined.

ALTC/S/G - Uses Char 3 if it is not zero

• OAH) SysReq - System Request key; treated like a shift key.
(See note 6 below).

• OBH) AccentKey - Keys that affect the "next" key pressed
(also known as dead keys). Char1 is an index into the
AccentTbl field of the XlateTable, selecting the AccentEntry
that corresponds to this key. Char2 and Char3 do the same
for the shifted Accent character. See note 15.

6-77

Category 4 -
Function SOH

6-78

SHIFT - Use Char2 to index to applicable AccentEntry.
CAPSLOCK- No effect on this key.
CTL - Use CtlAccent character from AccentEntry

(see note 8).
ALT - Use AltAccent character from AccentEntry

(see note8).

ALTC/S/G - Use Char3 to index to applicable AccentEntry.

Note: Key types OCH through 13H set Char1 & Char2 to mask
values as defined in note 6 below.

• OCH) ShiftKeys - SHIFT or Ctrl key, sets/clears flags. Char1
holds the bits in the lower byte of the shift status word to set
when the key is down and clear when the key is released.
Char2 does the same thing for the upper byte of the shift
status word, unless the "secondary" key prefix (hex EO) is
seen immediately prior to this key, in which case Char3 is
used in place of Char2.

• OOH) ToggleKey - General toggle key (like Caps Lock).
Char1 holds the bits in the lower byte of the shift status word
to toggle on the first make of the key after it is pressed.
Char2 holds the bits in the upper byte of the shift status word
to set when the key is down and clear when the key is
released unless the "secondary" key prefix (hex EO) is seen
immediately prior to this key, in which case Char3 is used in
place of Char2.

• OEH) ALTKey - ALT key. Treated just like ShiftKeys above, but
has its own key type because when seen, the accumulator
used for ALT-Padkey entry is zeroed to prepare such entry.
See note 5 for more information about ALT-PadKey entry.
Sometimes this key is treated as "ALTC/S/G" key if one of the
AltGraf bits is on in XTableFlags1.

• OFH) Numlock - NUMLOCK key. Behaves like ToggleKey
normally, but the KBDDD will set a pause screen indication
when this key is seen along with the Ctrl key depressed. The
pause is cleared on the following keystroke, if that stroke is a
character generating key.

Category 4 -
Function SOH

• 10H) Caps Lock -The Caps Lock key. This key is treated
exactly like a type OOH toggle key. It has a separate entry
here so that if it can be processed like a shift lock key when
that flag is set in the XTableFlags1 word in the header. When
treated as a ShiftLock, the Caps Lock flag in the shift status
word is set ON on any make of this key, and only cleared
when the left or right shift key is depressed. Char2 and Char3
are processed the same as ToggleKey.

• 11H) ScrollLock - SCROLL LOCK key. Behaves like
ToggleKey normally, but has a separate entry here so that
when used with "Ctrl-" it can be recognized as "Ctrl-Break".

• 12H) XShiftKey - Extended Shift Key (for Country Support).
See note 9 for more information.

• 13H) XToggleKey - Extended Toggle Key (for Country
Support). See note 9 for more information.

• 14H) SpecKeyCS - Special key 1 for foreign keyboard proc-
essing. See note 15 for more information.

SHIFT - Use Char2
CAPSLOCK - Use Char4
CTL - See note 4 below.
ALT - No effect on this key

ALTC/S/G - Use Char3

CAPS+SHFT - Use Chars

• 15H) SpecKeyAS - Special key 2 for foreign keyboard proc
essing. See note 15 for more information.

SHIFT
CAPS LOCK
CTL
ALT

ALTC/S/G

- Use Char2
- No effect on this key
- See note 4 below.
- Use Char4. See note 14 below

- Use Char3. See note 14 below

• 16-19H) Reserved

• 20-1 FFH) Reserved

6-79

Category 4 -
Function SOH

3. Undefined Character Code: Any key combination that doesn't fall
into any of the defined categories (e.g., the Ctrl key pressed
along with a key that has no defined control mapping) will be
mapped to the value 0 and the keytype will be set in the
KeyPacket record indicating undefined translation. The
KeyPacket record passed to the monitors (if any are installed)
will contain the original scan code in the ScanCode field and the
0 in the Character field for this key. Note that no chardata recs
with an undefined character code will be placed in the keyboard
input buffer.

4. Ctrl Key Notes: There are six possible situations for when a key is
pressed along with only the Ctrl shift key. They are:

6-80

a. The key pressed is an AlphaKey character. In this case the
Ctrl plus Char1 combination defines one of the standard
defined control codes. They are (all numbers are decimal):

Ctrl- Mapping Code Name Ctrl- Mapping Code Name

a 1 SOH n 14 so
b 2 STX 0 15 SI
c 3 ETX p 16 OLE
d 4 EOT q 17 DCl
e 5 ENQ r 18 DC2
f 6 ACK s 19 DC3
g 7 BEL t 20 DC4
h 8 BS u 21 NAK

9 HT v 22 SYN
j 10 LF w 23 ETB
k 11 VT x 24 CAN
l 12 FF y 25 EM
m 13 CR z 26 SUB

Note that any key defined as AlphaKey will use the Char1
code value minus 96 (ASCII code for "a") plus 1 to set the
mapping shown above. So any scan code defined as
AlphaKey must assign to Char1 one of the allowed lower
case letters.

b. The key pressed is a non-alpha character (like"["), but is not
an "action" key (like Enter, Backspace, or an arrow key).
This is a SpecKey[C][A] in the list of key types above. In this
case (with one exception) the mapping is based on the scan
code of the key. Though the key may be re-labeled, the
Ctrl +Char combination is always mapped based on the scan

Category 4 -
Function SOH

code of the key using the following table (all numbers are
decimal):

Scan US Kbd Mapped Name of
Code Legend Value New Code

3 2 @ 0 Null
7 6 A 30 RS

* 12 31 us (see note below)
26 [{ 27 Esc
27] } 29 GS
43 \ I 28 FS

Note: The mapping for the hyphen character("-") is the one
exception. The scan code for it is ignored, only the ASCII
code for hyphen (decimal 45) is looked for (in Char1) when
mapping the Ctrl + "-" combination. This is because there
may be more than one occurrence of the"-" key on the key
board.

c. The key pressed is an "action" key like Enter, backspace, or
an arrow key. These keys generate special values when
used in conjunction with the Ctrl key. Those actions are
defined in other notes where they apply.

d. The key pressed is a function key (F1 - F12).
e. The key pressed is an accent key. See note 8 for details.
f. The key is not defined in conjunction with Ctrl. In that case,

the key will treated as undefined, as described in note 3.
5. Pad Key Notes: The pad keys have several uses depending on

various shift states. Some of them are based on their position on
the keyboard. Because keyboard layouts change, here are the
hard coded assumed positions of the keypad keys, with the
"offset" value that must be coded into Char1 of the table. Any
remapping must use the Char1 values defined below for the keys
that correspond to the pad keys given by the Legend or Char2
values shown:

6-81

Category 4 -
Function SOH

US Kbd Scan Charl Char2
Legend Code REQUIRED US Kbd

Home 7 71 Binary 0 ASCII 7
Up 8 72 1 8
PgUp 9 73 2 9

74 3
Left 4 75 4 4

5 76 5 5
Right 6 77 6 6

+ 78 7 +
End 1 79 8 1
Down 2 80 9 2
PgDn 3 81 10 3
Ins e 82 11 e
Del 83 12

Note that when Numlock is OFF, or if Shift is active & Numlock
ON, the code returned is the "extended" code. The code returned
corresponds to the Legends above (Home, PgUp, etc). When
Numlock is ON, or if SHIFT is active & Numlock is OFF, the code
returned is Char2. Note that the "+" and "-" keys will return
Char2 under ALL shift combinations except Ait (see beiow}.

When the Alt key is used with the PadKeys, the absolute value of
the pressed key (looked up using the required Char1 value) is
added to the accumulated value of any of the previous numeric
keys pressed without releasing the Alt key. Before adding the
new number to the accumulated value, that accumulation is multi
plied by ten, with overflow beyond 255 ignored. When Alt is
released, the accumulation becomes a Character code, and is
passed along with a scan code of zero. Note that if any key other
than the 10 numeric keys is hit, the accumulated value is reset to
zero.

When AltGraphics is used with the PadKeys the Char3 value is
returned if it is non-zero and if an AltGraf bit is set in
XTableFlags1; otherwise it is treated the same as the Alt key.

6. State Key Notes: Each state key entry has Char1, Char2, and
Char3 defined as follows:

6-82

Char1 is a mask to set the appropriate bit in the low byte of the
keyboard Shift Flags when the state key is pressed. When the
state key is a toggle key, the set bit will be toggled each addi-

Category 4 -
Function SOH

tional time the key is pressed. When the state key is not a toggle
key, the set bit will be cleared when the key is released.

Char2 is a mask to set the appropriate bit in the high byte of the
Keyboard Shift Flags when the key is pressed.

Char3 is used in place of Char2 when the secondary key prefix is
seen immediately prior to this key.

The masks are (numbers are in hex):

Key Charl Char2 Char3

Right Shift el ee ee
Left Shift e2 ee ee
Ctrl Shift e4 01 e4
Alt Shift ea e2 ea
Scroll Lock le le le
Num Lock 20 20 20
Caps Lock 4e 4e 4e
SysReq ee ae ae

Note that the INS key is not treated as a state key, but as a Pad
key. Also note that SysReq is included here as it is treated as a
shift key.

7. Alt Character Notes: Most of the keys defined in a category that
allows the Alt key (AlphaKey, SpecKeyA, SpecKeyCA) return a
value called an Extended Character. This value is a character
code of OOH or EOH with a second byte (using the ScanCode field
of the CharData record) defining the extended code. In most
cases this value is the scan code of the key. Since the legend on
these keys may be remapped on a foreign language keyboard,
the Alt based extended code is hard to define in a general sense.
The following rules are used:

• AlphaKey: The extended code is derived from Char1 (the
"lower case" character) as it was originally mapped on the
PC keyboard. The original scan code value itself is the
extended code that a character will return. These keys can
be moved and will still return their original Alt extended
codes.

• SpecKeyA and SpecKeyCA: This category is used for all keys
that are not an alphabetical character or an "action" code
(like Enter or Backspace, the only exception being the tab key
which IS treated as a character). On foreign keyboards these

6-83

Category 4 -
Function SOH

•

keys may be moved around and/or have new values assigned
to them (such as special punctuation symbols). So the Alt
mappings must be based on the real scan code. The effect of
this is that keys defined by the SpecKey_ classification will
only have an Alt mapping if it is in one of the positions
defined below. In that case the Alt extended code is as
shown in the table.

Scan US Kbd ALT Scan US Kbd ALT
Code Legend Value Code Legend Value

2 1 ! 129 8 7 & 126
3 2 @ 121 9 8 * 127
4 3 # 122 le 9 (128
5 4 $ 123 11 9) 129
6 5 % 124 12 139
7 6 A 125 13 = + 131

FuncKey: Defined in note 2 .

When AltGraphics is used the Char3 value is returned if it is
non-zero and if an AltGraf bit is set in XTableFlags1; otherwise it
is treated the same as the Alt key.

8. Accent Key Notes: When an accent key is pressed along with Ctrl
or Alt it is treated as a regular key. The character it is translated
to is the one in the CtlAccent or AltAccent field of the AccentEntry
pointed to by the Char5 value of the KeyDef. If the key being
defined will have no defined value with Ctrl or Alt, it should have
zeroes in the field of the undefined combination.

6-84

When an accent key is pressed by itself (or with Right or Left Shift
or AltGraphics) it will not be translated immediately. The Char1
(or Char2 when Left or Right Shift is used or when the
AltGraphics is used) index in the KeyDef record will be used with
the next key received to check if the next key has an accent
mapping. If that next key has no mapping for this accent (i.e., if it
has no bit set in its AccentFlags for this accent, or if that next key
is not found in this accent's AccentEntry) then the character value
in the NonAccent field of the AccentEntry is used as the character
to display, followed by the translation of that next key (i.e., both
characters are passed on) after the not-an-accent beep is
sounded.

Category 4 -
Function SOH

Note that if a key doesn't change when a left or right shift key is
held down it should use the same value for Char1 and Char2 so
that the accent will apply in both the shifted and non-shifted
cases. If the accent value is undefined when used with a shift key
or AltGraphics the value in Char2 or Char3 should be zero.

Any accent key that doesn't have an Alt or Ctrl mapping should
put zeros in the AltAccent and CtlAccent fields of its AccentEntry.
If the value in the table is between 1 and 7 then the key is consid
ered an accent key and further accent key processing is indi
cated. Reference note 1 for further information.

9. Extended State Key Notes: For special Country support, the Key
board Device Driver maintains another byte of shift status. Key
types 12H and 13H are provided for manipulation of that byte.
The other fields of the KeyDef are:

• Char1: A mask where the bits that are on are those bits that
define the field being used for the Char2 value. Only the bits
in the NLS shift status byte that correspond to the bits in this
byte will be altered by the Char2 value.

• Char2: For KeyType 12H (Extended Shift), the value to OR into
the byte when the make code is seen and who's inverted
value is ANDed when the break code is seen. For KeyType
13H (Extended Toggle), the value XORed into the byte on
each make code seen (break code ignored).

• Char3: Use in place of the Char2 when the "secondary" key
prefix (hex EO) is seen immediately prior to this key.

Examples of usage are: Char1/2 can define single shift status
bits to set/clear/toggle. Char2 can be a set of coded bits
(delineated by Char1) that will be set to a numeric value
when the key is hit and cleared to zero when released (or on
the next hit if toggle). The whole byte can be set to Char2
when Char1 has all bits on.

10. Space Key Note: The key treated as the space character should
have a flag set in its AccentFlags field for each possible accent
(i.e., for each defined AccentEntry in the AccentTable). And each
AccentEntry should have the SPACE character defined as one of
its accented characters, with the translation being to the same
value as the accent character itself. The reason for this is that, by
definition, an Accent Key followed by the space character maps
to the accent character alone. If the table is not set up as just

6-85

Category 4 -
Function SOH

described, a not-an-accent beep will be sounded whenever the
accent key followed by a space is pressed.

Note that the space key is defined as a SpecKeyA (type 4)
because its use in conjunction with the Alt key is allowed. In that
case it will still return the ASCII space character. It will also
return the ASCII space character when used with the Ctrl key.

This works correctly except in the case of the diaresis accent
(double-dot) in code page 437. Here, the space is treated as an
invalid character and the beep result occurs, with the diaresis
represented by double quote. Characters are displayed
depending upon the language in effect when the invalid diaresis
is encountered. ·For some languages the character substituted is
the double-quote; for others, the character used is the F9h char
acter.

11. KbdType will identify the hardware specific keyboard this table is
for. The values and allowable types are the same as specified in
the Get Keyboard Type, IOCtl 77H.

12. The DefaultTable flag in XtableFlags1 is used by the KEYB utility
in loading code pages when changing from one language to
another. It identifies the default code page to KEYB should KEYB
not find one or both CODEPAGE= defined code pages.

13. The language IDs used are as follows:

6-86

Keyboard
Layout
Code
us
UK
GR
FR
IT
SP
DK
NL
SU
NO
PO
sv
SF
SG

Country
UNITED STATES
UNITED KINGDOM
GERMANY
FRANCE
ITALY
SPAIN
DENMARK
NETHERLANDS
FINLAND
NORWAY
PORTUGAL
SWEDEN
SWISS-FRENCH
SWISS-GERMAN

Category 4 -
Function SOH

CF CANADIAN-FRENCH
BE BELGIUM
LA LATIN-AMERICAN SPANISH

14. Keytype 15: When ALT or ALT+ SHFT key is pressed both the
XlatedChar and XlatedScan in the CharData record will have the
same value.

15. If the Charx value is in the range of 1 - 7 then Charx identifies an
accent key; otherwise Charx is treated as a valid ASCII character.
This does not apply to CTL-Charx sequences.

16. If either the AL TGRF, ALT SHIFT, or ALT CTL are pressed and
Char3 is zero, the ALT key will be used to translate to a valid
result.

17. Size: The code page described here is of the following
di mansions:

Xl ate Header 40
127 KeyDef s @ 7 Bytes 889
7 AccentEntries @ 46 Bytes 322

Returns
None

Remarks

1251 Bytes

This request changes the device driver resident code page for the
system. This IOCtl updates the ZERO entry of the code page control
block.

6-87

Category. 4 -
Function 51 H

Purpose
Set Input Mode

Parameter Packet Format

I Field

Mode

Data Packet Format
None

Where

Mode
is a 1-byte field containing:

Bit ldea;;i;;g
1xxxxxx1 Shift Report
OxxxxxxO ASCII mode
1xxxxxxx BINARY mode

Returns
None

Remarks

Length

BYTE

This request is used to pass the current input mode to the keyboard
device driver. The keyboard device driver will maintain the mode
separately for each session. The caller can interrogate the mode
using function code 71H. The mode is also returned on every READ
CHARACTER DATA RECORD(S) call, function code 74H, and PEEK
CHARACTER DATA RECORD call, function code 75H. The default
input mode is ASCII. The device driver uses mode when processing
CTL functions and reporting the shift state when shift report is set on.

6-88

Purpose
Set Interim Character Flags

Parameter Packet Format

I Field

Flag

Data Packet Format
None

Where

Flag

Category 4 -
Function 52H

Length

BYTE

is a 17-byte field containing flag bits. A bit set= to 1 indicates the
state listed below:

Bit Meaning
7 Interim console flag on
6 Reserved = 0
5 Program requested on-the-spot conversion
4 Reserved= 0
3 Reserved = 0
2 Reserved= 0
1 Reserved = 0
0 Reserved = 0

Returns
None

Remarks
This request is used to set the interim character flags maintained by
the keyboard device driver. The keyboard device driver will maintain
the flags separately for each session. The keyboard device driver
passes the interim character flags with each character data record to
keyboard monitors.

6-89

Category 4 -
Function 53H

Purpose
Set Shift State

Parameter Packet Format

Fie Id

Shift State

NLS

Data Packet Format
None

Where

Shift State
is a wo;d field containing shift states.

Word High Byte

Bit Meaning
15 SysReq Key down
14 Caps Lock Key down
13 NumLock Key down
12 ScrollLock Key down
11 Right Alt Key Down
10 Right Ctrl Key Down
9 Left Alt Key Down
8 Left Ctrl Key Down

6-90

Length

WORD

BYTE

Word Low Byte

Bit Meaning
7 Insert On
6 Caps Lock On
5 NumLock On
4 Scro I I Lock On
3 Either Alt Key Down
2 Either Ctrl Key Down
1 Left Shift Key Down
0 Right Shift Key Down

NLS
is a byte field containing NLS shift status.

Returns
None

Remarks

Category 4 -
Function 53H

This request is used to set the current shift state for the keyboard.
The keyboard device driver maintains the shift state separately for
each logical keyboard. Note that this call will override the shift state
set by previous shift keystrokes. Also the shift state set by this func
tion code will be overridden by any subsequent shift keystrokes. The
shift state is inserted into the character data record that is built for
each incoming keystroke.

6-91

Category·· 4 -
Function 54H

Purpose
Set Typematic Rate and Delay

Parameter Packet Format

Fie Id

Delay

Rate

Data Packet Format
None

Where

Delay

Length

WORD

WORD

specifies the typematic delay in milliseconds. A value greater
than the maximum value defaults to the maximum value.

Rate
specifies the typematic rate in characters per second. A value
greater than the maximum value defaults to the maximum value.

Returns
None

Remarks
This request is used to set the keyboard typematic rate and delay to
the values specified in the request.

6-92

Purpose
Notify of Change of Foreground Session

Parameter Packet Format

Field

Session Number

Terminate Flag

Data Packet Format
None

Where

Session Number

Category 4 -
Function 55H

Length

WORD

WORD

is a one word field containing the new foreground session. The
session number must fall within the range 0 through 15.

Terminate Flag
is a one word field indicating whether the session is being termi
nated. A -1 value indicates termination otherwise non-termination
is indicated.

Returns
None

Remarks
This request is used to tell the keyboard device driver a new fore
ground session has been made active. The keyboard device driver
will set the shift state of the keyboard to the state that was current
when the new session was last active. The keyboard device driver
will begin using the keyboard input buffer (KIB) and keystroke
monitor chain associated with the new session. This command is
restricted and may only be used by the first process that makes the
call.

6-93

Category 4 -
Function 56H

Purpose
Set Session Manager Hot Key

Parameter Packet Format

Field

State

Make Code

Break Code

Hot Key ID

Data Packet Format
None

Where

State

High Byte

Bit Meaning
15 SysReq
14 Caps Lock Key down
13 NumLock Key down
12 Scroll Lock Key down
11 Right Alt Key Down
10 Right Ctrl Key Down
9 Left Alt Key Down
8 Left Ctrl Key Down

6-94

Length

WORD

BYTE

BYTE

WORD

Low Byte

Bit Meaning
7 Reserved = 0
6 Reserved = O
5 Reserved = 0
4 Reserved = 0
3 Reserved = 0
2 Reserved = 0
1 Left Shift Key Down
0 Right Shift Key Down

Make Code
is the scan code of the hot key make

Break Code
is the scan code of the hot key break

Hot Key ID
is the hot key ID (Value is set by the caller).

Returns
None

Remarks

Category 4 -
Function 56H

This request is used by the session manager to set a list of keyboard
hot keys the keyboard device driver will begin looking for. The new
hot key is global, that is, it applies to all sessions. Up to 16 hot keys
can be defined by the session manager for handling by the keyboard
device driver. This IOCtl call will only be successful if done by the
process which initially invoked IOCtl 55H (Set Foreground Session).
The combination of the shift flags in the first word and the scan codes
in the second allow the session manager to set hot key combinations
such as Alt+ Esc. The hot key is triggered on detection of the scan
code for the hot key break.

6-95

Category 4 -
Function 56H

Note: If a DOS execution environment application has claimed hard
ware interrupt 9 or interrupt 50, the hot key will be triggered on
detection of the break scan code for the required shift key.

A hot key can be redefined by calling this function with the same hot
key ID.

6-96

Purpose
Set KCB

Parameter Packet Format

I Fleld

KCB Handle

Data Packet Format
None

Where

KCB Handle

Category 4 -
Function 57H

Length

WORD

is the handle identifying the logical keyboard's KCB.

Returns
None

Remarks
This request binds the specified logical keyboard (KCB) to the phys
ical keyboard for this session.

6-97

C•tegory 4· -
Function SSH

Purpose
Set Code Page ID

Parameter Packet Format

Field

Code Page Pointer

Code Page ID

Set to Zero

Data Packet Format
None

Where

Code Page Pointer

Length

DWORD

WORD

WORD

is the selector:offset pointing to the code page.

Code Page ID
is one word containing the current code page ID.

Returns
None

Remarks
Sets the code page used by the current KCB to the code page identi
fied by the input parameter. This IOCtl is callable from the DOS exe
cution environment.

6-98

Category 4 -
Function SCH

Purpose
Set NLS and Custom Code Page

Parameter Packet Format

Fie Id

Code Page Pointer

Code Page Number

Code Page to Load

Hot Key ID

Data Packet Format
None

Where

Code Page Pointer

Length

DWORD

WORD

WORD

WORD

is the selector:offset pointing to the code page.

Code Page Number
is one word identifying the code page number.

Code Page to Load
is one word identifying the number of the code page to load, 1 or
2. A -1 indicates a custom code page for which the segment con
taining the custom code page will be locked. This option is not
valid for the DOS execution environment.

Hot Key ID
is the hot key ID (Value is set by the caller).

Returns
None

6-99

Category 4 -
Function SCH

Remarks
This request is used to install one of two possible code pages into

the device driver. This IOCtl will update the number one or two entry
of the code page control block; entry zero is the device driver resi
dent code page. Note that this IOCtl is similar to IOCtl 50H, Set Code
Page, except that different entries in the code page control block are
updated. This IOCtl is callable from the DOS execution environment.

6-100

Purpose

Category 4 -
Function SDH

Create Keyboard creates a new logical keyboard.

Parameter Packet Format

I Fleld

KCB ID

Data Packet Format
None

Where

KCBID

Length

WORD

is one word containing a unique value used to identify the new
logical keyboard. A zero indicates the default keyboard.

Returns
None

Remarks
None

6-101

Category 4 -
Function 5EH

Purpose
Destroy Keyboard destroys an existing logical keyboard.

Parameter Packet Format

I Fleld

KCB ID

Data Packet Format
None

Where

KCBID

Length

WORD

is one word containing a unique value used to identify the new
logical keyboard. A zero indicates the default keyboard.

Returns
None

Remarks
None

6-102

Purpose
Get Input Mode

Parameter Packet Format
None

Data Packet Format

I Fleld

Mode

Where

Mode

Category 4 -
Function 71 H

Length

BYTE

is a 1-byte field containing one of the following values:

Bit Meaning
1 xxxxxx1 Shift Report
OxxxxxxO ASCII mode
1xxxxxxx BINARY mode

Returns
None

Remarks
This request is used to obtain the input mode of the session of the
currently active process. The input mode can be set with function
code 51H. The input mode is meaningful for Ctrl-C, Ctrl-P, Ctrl-S,
Ctrl-Break, Ctrl-Scrolllock, and Ctrl-PrtSc processing only.

6-103

Category 4 -
Function 72H

Purpose
Get Interim Character Flags

Parameter Packet Format
None

Data Packet Format

I Field

Flags

Where

Flags

Length

BYTE

is a 1-byte field containing flag bits. A bit set= to 1 indicates the
state listed below:

Bit Meaning
7 Interim console flag on
6 Reserved = 0
5 Program requested on-the-spot conversion
4 Reserved = O
3 Reserved = 0
2 Reserved = O
1 Reserved = O
0 Reserved = 0

Returns
None

Remarks
This request is used to obtain the interim character flags maintained
by the keyboard device driver.

6-104

Purpose
Get Shift State

Parameter Packet Format
None

Data Packet Format
None

Returns
None

Remarks

Category 4 -
Function 73H

This request is used to obtain the shift state of the session of the cur
rently active process. The shift state is set by incoming key strokes
and by function code 53H calls.

Refer to function 53H, Set Shift State for the data structure.

6-105

Category 4 -
Function 74H

Purpose
Read Character Data Record(s)

Parameter Packet Format

Field

Transfer Count

Data· Packet Format

Length

WORD

See "KbdCharln - Read Character, Scan Code" on page 3-2 for
the CharData data structure.

Where

Transfer Count
is a one word field containing the record transfer count. The sign
bit of this word is set to request one of the following actions:

O Wait for the requested number of key strokes to become
available. The device driver will block the requestor until all
requested character data records are available and have
been transferred to the caller.

1 Do not wait for the requested number of key strokes to
become available. In this case, all characters currently
available will be transferred, up to the requested transfer
count.

Returns
None

6-106

Remarks

Category 4 -
Function 74H

This request is used to obtain one or more character data records
from the keyboard input buffer (KIB) for the session of the currently
active process. Note that if shift report is on then the CharData
record may not contain a character but a shift state change in the
shift status field.

6-107

pategory 4 -
Function 75H ·

Purpose
Peek Character Data Record

Parameter Packet Format

I Fleld

Status

Data Packet Format

Length

WORD

See "KbdCharln - Read Character, Scan Code" on page 3-2 for
the CharData data structure.

Where

Status
is a one word field which contains either Oto indicate no key
stroke is available or 1 to indicate that a character data record is
being returned. The sign bit is set to either 0 if the current input
mode is ASCII or 1 if the input mode is BINARY.

Returns
None

Remarks
This request is used to obtain one character data record from the
head of the keyboard input buffer (KIB) of the session for the currently
active process. The character data record is not removed from the
KIB. Note that if shift report is on then the CharData record may not
contain a character but a shift state change in the shift status field.

6-108

Purpose
Get Session Manager Hot Key

Parameter Packet Format

I Fleld

Type

Data Packet Format
None

Where

Type

Category 4 ~
Function 76H

Length

WORD

is a one word subtype indicating the type of information to return:

0 Return the maximum number of hot keys the keyboard device
driver can support.

1 Return the number of hot keys currently defined in the system
and return the key information for each.

Returned Data Buffer
If parameter I ist on entry was 1, one or more hot key data struc
tures as described under IOCtl function code 56H (Set Session
Manager Hot Key).

Returns
None

Remarks
This request is used to obtain the scan code the keyboard device
driver is using as the session manager hot key.

6-109

Category 4 -
Function 76H

This function should first be called with parameter list subtype = Oto
determine the maximum number of hot keys the device driver can
support. The value returned should be used to determine the
required size of the data buffer on a subsequent call to return the hot
key data structures (parameter list subtype = 1).

6-110

Purpose
Get Keyboard Type

Parameter Packet Format
None

Data Packet Format

Fie Id

Keyboard Type

Reserved= O

Where

Keyboard Type
is a 1-word field containing:

High Byte: Reserved = O

Low Byte:

Value Meaning

Category 4 -
Function 77H

Length

WORD

DWORD

OOH Personal Computer AT keyboard
01 H Enhanced Keyboard
02H to FFH Reserved = O

Returns
None

Remarks
This request returns the keyboard type.

6-111

Category 4 ·~

Function 78H

Purpose
Get Code Page ID

Parameter Packet Format

I Fleld

Code Page ID

Data Packet Format
None

Where

Code Page ID

Length

WORD

is one word containing the current code page ID. A 0 indicates
+ha+ DI' I IC A'l7 ic. he.inn 11c..:u·~· nno \AU'U"ti rOC!Or\/Orl !:anti C!Ot tn n
LllQL I'-''-''-" ~UI I~ UQlll~ U.,;;111'-"""'' ""llV WWVI W 1 V'-'VI W'""""' ""'11ol•""' """""• • ..., "'•

Returns
None

Remarks
This request returns the code page in use by the current KCB. A -1 is
returned if a custom code page is installed. This IOCtl is callable
from the DOS execution environment.

6-112

Purpose
Translate Scan Code to ASCII

Parameter Packet Format

I Fleld

Code Page ID

Data Packet Format

Fie Id

CharData Record

KbdDDFlags

Xlate Flags

Xlate State1

Xlate State2

Where

Code Page ID

Category 4 -
Function 79H

Length

WORD

Length

10 BYTES

WORD

WORD

WORD

WORD

is one word containing the current code page ID.

CharData Record
See "KbdCharln - Read Character, Scan Code" on page 3-2
(10 bytes).

KbdDDFlags
as defined in the Device Monitor packets in OS/2 Technical Refer
ence, Volume 1 Chapter 2

6-113

Category 4 -
Function 79H

Xlate Flags

High Byte

Value
8-15

Low Byte

Value
1-7
0

Meaning
Reserved= 0

Meaning
Reserved= O
Translation complete

Xlate State1 and Xlate State2
identifies the state of translation across successive calls. Initially
these words should be 0. They should be reset to 0 when the
caller wa_nts a new start to translation. Note that it may take
several calls to this IOCtl to complete a character so these fields
should not be touched unless a fresh start to translation is
desired. These fields are set to 0 at the completion of translation.

Returns
None

Remarks
This request translates a scan code in a CharData record to an ASCII
character. Optionally a code page may be specified to use for trans
lation otherwise the code page of the active KCB will be used.

6-114

Category 5 Printer Control IOCtl Commands

Following is a summary of Category 5 descriptions:

Function Description
42H Set frame control (CPL, LPI)
44H Set infinite retry
45H Reserved
46H Initialize printer
48H Activate font
62H Get frame control
64H Get infinite retry
66H Get printer status
69H Query active font
6AH Verify font

6-115

Category>&
-Function 42H

Purpose
Set Frame Control

Parameter Packet Format

Field

Command Information

Data Packet Format

Fie Id

Characters per Line

Lines per Inch

Where

Command Information
is reserved and must be set to O

Characters Per Line
Valid numbers are 80 and 132.

Lines Per Inch
Valid numbers are 6 and 8.

Returns
None

Remarks
None

6-116

Length

BYTE

Length

BYTE

BYTE

Purpose
Set Infinite Retry

Parameter Packet Format

Fleld

Command Information

Data Packet Format

I Field

Data

Where

Command Information
is reserved and must be set to O

Data
The data is defined as:

0 = Disable Infinite retry
1 = Enable Infinite retry

Returns
None

Remarks
None

Category 5 -
Function 44H

Length

BYTE

Length

BYTE

6-117

Category> 5 -
Function 46H

Purpose
Initialize Printer

Parameter Packet Format

Fie Id

Command Information

Data Packet Format

I Fleld

SetToO

The following fields are defined:

Command Information
is reserved and must be set to 0.

Returns
None

Remarks
None

6-118

Length

BYTE

Length

BYTE

Purpose
Activate Font

Category 5 -
Function 48H

Parameter Packet Format

Fie Id Length

Command Information BYTE

ledi process.

Fie Id Length

Code Page WORD

Font ID WORD

Where

Command Information
is reserved and must be set to 0.

Code Page
is the value of the code page to make the currently active code
page.

OOOOH If the Code Page value and Font ID are specified
as 0 (0), set printer to hardware default code
page and font.

0001 H-FFFFH Valid code page numbers.

Font ID
is the ID value of the Font to make currently active.

OOOOH If the Code Page value and Font ID are specified
as O (0), set printer to hardware default code
page and font.

If font Id is O and the code page is a valid non-0,
then any font is acceptable.

6-119

Category 5 -
Function 48H

0001H-FFFFH Valid font ID numbers, font types defined by the
font file definitions for download fonts. For car
tridge fonts, font IDs are the numbers on the car
tridge label and are also entered in the DEVINFO
statement for the printer.

Returns

IF AX = 0 NO error
ELSE AX = Error Code

FE02 Code page is not available
FE03 No code page function because spooler not started
FE04 Font ID is not available(verify)
FE09 Error caused by switcher error not by input parameters
FEOA Error caused by invalid printer name as input
FEOD Got code page req when CP switcher not initialized
FEOF PIO table full cannot activate another entry
FE13 DASO error reading font file control sequence section
FE15 DASO error reading font file font definition block
FE17 DASO error while writing to temporary spool file
FE18 Disk full error while writing to temporary spool file
FE19 Spool file handle was bad

Remarks
None

6-120

Purpose
Return Frame Control

Parameter Packet Format

Fie Id

Command Information

Data Packet Format

Fie Id

Characters per Line

Lines per Inch

Where

Command Information
is reserved and must be set to 0.

Characters Per Line
On return, field is set to 80 or 132.

Lines Per Inch
On return, field is set to 6 or 8.

Returns
None

Remarks
' None

Category 5 -
Function 62H

Length

BYTE

Length

BYTE

BYTE

6-121

Category 5 . -
fuf'~ion '64H

Purpose
Return Infinite Retry

Parameter Packet Format

Fie Id

Command Information

Data Pack't Format

I Fleld
- Data

Where

Command Information
is reserved and must be set to 0.

Data
On return, Data byte is set:

O = Infinite retry is disabled.
1 = Infinite retry is enabled.

Returns
None

Remarks
None

6-122

Length

BYTE

Length

BYTE

Purpose
Return Printer Status

Parameter Packet Format

Fie Id

Command Information

Data Packet Format

I Fleld

Data

Where

Command Information
is reserved and must be set to 0.

Category 5 -
Function 66H

Length

BYTE

Length

BYTE

6-123

Category 5 -
Function &&H

Data
On return, Data byte is set:

Bit 7 6 5 4 3 2

1 =Timeout

Unused

....___ _ ___,_ Unused

Returns
None

Remarks
None

6-124

1 = 110 error

1 =Selected

1 = Out of Paper

1 = Acknowledge

1 = Not Busy

Purpose
Query Active Font

Category 5 -
Function 69H

Parameter Packet Format

Fie Id Length

Command Information BYTE

Data Packet Format

Fie Id Length

Code Page WORD

Font Id WORD

Where

Command Information
is reserved and must be set to 0.

Code Page
On return, is set to currently active code page.

OOOOH if the Code Page value and Font ID are returned
as 0 (0), the printer is set to the hardware default
code page and font.

0001 H-FFFFH Valid code page numbers.

Font ID
On return, is the ID value of the Font which is currently active.

OOOOH if the Code Page value and Font ID are specified
as O (0), the printer is set to the hardware default
code page and font.

If font id is O and code page is non-0, no error will
be returned if any font id is available for the
specified code page.

6-125

Category 5 -
Function 69H

0001 H-FFFFH Valid font id numbers, font types defined by the
font file definitions for download fonts. For car
tridge fonts, font IDs are the numbers on the car
tridge label and are also entered in the DEVINFO
statement for the printer.

Returns

IF AX= 0
then NO Error

ELSE
AX = Error Code

FE03 No code page function because spooler not started
FE09 Error caused by switcher error not by input parameters
FEOA Error caused by invalid printer name as input
FEDD Got code page req when CP switcher not initialized
FE10 Received request for process ID not in PIO table

Remarks
None

6-126

Purpose

Category 5 -
Function &AH

Verify that a particular code page and font is available for the speci
fied printer

Parameter Packet Format

Field Length

Command Information BYTE

Data Packet Format

Field Length

Code Page WORD

Font Id WORD

Where

Command Information
is reserved and must be set to 0.

Code Page
Th~ Code Page number to validate.

Values may be o to 65535.

Font ID
The Font ID value to validate.

values may be 0 to 65535. The font ID is contained in the font file
for download fonts. For cartridge fonts, font IDs are the numbers
on the cartridge label and are also entered in the DEVINFO state
ment for the printer.

Note: A value of O (0) for both the Code Page number and Font Id
indicates the default hardware code page and font; this combination
is always valid.

6-127

Category 5 -
Function &AH

Returns

IF AX= 0
then NO Error

ELSE
AX = Error Code

FE02 Code page is not available
FE03 No code page function because spooler not started
FE04 Font id is not available(verify)
FEOA Error caused by invalid printer name as input
FEOD Got code page req when CP switcher not initialized

Remarks
None

6-128

Category 7 Mouse Control IOCtl Commands

Following is a summary of Category 7 descriptions:

Function Description
50H Allows Pointer Drawing after Screen Switch
51 H Notifies of Display Mode Change
52H Notifies of Impending Session Switch
53H Reassigns the Current Mouse Scaling Factors
54H Assigns a New Mouse Event Mask
56H Sets the Pointer Shape
57H Frees the Mouse to Draw the Pointer anywhere on the

Screen (unmark collision area)
58H Restricts the Mouse from Pointer Drawing in Specified

Area(s) of the Screen (mark collision area)
59H Specifies/Replaces the Pointer Position
SAH Specifies the Pointer Draw Device Driver Address (OS/2

mode only)
5BH Specifies the Pointer Draw Device Driver Address (DOS

mode only)
5CH Specifies a Subset of the Current Mouse Device Driver

Status Flags
60H Indicates the Number of Mouse Buttons Supported by the

Device Driver
61 H Indicates the Mouse Setting for the Number of

Mickeys/Centi meter
62H Indicates the Current Pointer Device Driver Status Flags
63H Reads the Mouse Event Queue
64H Indicates the Current Event Queue Status
65H Indicates the Current Mouse Event Mask
66H Indicates the Current Mouse Scaling Factors
67H Indicates the Current Pointer Screen Position
68H Indicates the Current Pointer Shape

6-129

C•tegory 7 -
Function.·SOH

Purpose
Allows Pointer Drawing after Session Switch

Parameter Packet Format
None

Data Packet Format
None

Returns
None

Remarks
This function has no input or output parameter values.

This function notifies the mouse device driver that a session switch
has been compieted and the pointer may now be drawn.

6-130

Purpose
Notifies of Display Mode Change

Parameter Packet Format

Fie Id

Length

Type

Color

Text Column

Text Row

Graphics Column

Graphics Row

Data Packet Format
None

Where

Length

Category 7 -
Function 51 H

Length

WORD

BYTE

BYTE

WORD

WORD

WORD

WORD

is an input parameter to VioSetMode. Length specifies the length
of the data structure in bytes including Length itself. The
minimum structure size required is 3 bytes, and the maximum
structure size required is 12 bytes. Any value specified for Length
other than 3 must be an even number. If a structure of length less
than the maximum is specified, OS/2 will use default values for
the remaining fields.

Type
is a bit mask that contain specifications for the mode being set.
The definitions of the bits follow:

6-131

Category 7 -
Function 51 H

xxxxxxxb b = 0 monochrome compatible mode
b = 1 other

xxxxxxbx b = e text mode
b = 1 graphics mode

xxxxxbxx b = e enable color burst
b = 1 disable color burst

Color
defines the number of colors as a power of 2. This is equivalent to
the number of color bits which define the color. For example,

Color = 1 specifies 2 colors
Color= 2 specifies 4 colors
Color= 4 specifies 16 colors
Color = 8 specifies 256 colors

Color= e should be specified for
monochrome modes 7, 7+, and F.

Text Column
are the number of text columns.

Text Row
are the number of text rows. 25 rows are supported for the color
graphics adapter. Supported for the enhanced graphics adapter
are rows 25 and 43. are Supported for the VGA adapter and the
IBM Personal System/2 Display Adapter are rows 25 and 50.

Graphics Column
is the number of pet columns.

Graphics Row
is the number of pet rows.

Returns
None

6-132

Remarks

Category 7 -
Function 51 H

When the Video Subsystem or registered Video Subsystem
sets/resets the display mode, they must synchronize the mouse
device driver pointer update routines by providing this notification
record to the mouse device driver prior to switching display modes.

The parameter packet is a far pointer to a Mode Data Definition
record.

This call returns no parameter values.

6-133

Category .7 -
Function 52H

Purpose
Notifies of Impending Session Switch

Parameter Packet Format

Fie Id

Session Number

Switch Notification Type

Data Packet Format
None

Where

Session Number

Length

WORD

WORD

is the session number for notification action. This value must be
in the range of 0 < = session number < =
MaxNumberOfScreenGroups. The Global lnfoSeg defines the
valid range session ID's.

Switch Notification Type
is the switch notification type. The values for this parameter
follow:

Value
-1
> = 0

Returns
None

Remarks

Meaning
= The specified session number is terminating.
= The specified session number is being switched to.

This function sets a system pointer draw enable/disable flag which
does not allow pointer drawing until the flag is cleared via a 50H func
tion.

6-134

Caiegory 7 -
Function 53H

Purpose
Reassigns the Current Mouse Scaling Factors

Parameter Packet Format

Fie Id

Row Data

Column Data

Data Packet Format
None

Where

Row Data
Row coordinate scaling factor.

Column Data
Column coordinate scaling factor.

Langth

WORD

WORD

The scaling factor values are positive integers in the range of:

0 < value < = (32K - 1)

Returns
None

Remarks
This function requires two 1-word caller-specified parameters.

Scaling factors are ratio values that determine how much relative
movement is necessary before the mouse device driver will report a
mouse event.

6-135

Category 7 -
Function 53H

The ratios specify the number of mickeys per 8 pixels. The default
ratio values are:

Vertical/Row ration - 16 mickeys per 8 pixels
Horizontal/Row ratio - 8 mickeys per 8 pixels.

6-136

Category 7 -
Function 54H

Purpose
Assigns a New Mouse Event Mask

Parameter Packet Format

I Fleld

Event Mask

Data Packet Format
None

Where

Event Mask

Bit Meaning
7-15 Reserved = 0
6 Set if button 3 is down

Length

WORD

5 Set if motion with button 3 down
4 Set if button 2 is down
3 Set if motion with button 2 down
2 Set if button 1 is down
1 Set if motion with button 1 down
0 Set if all mouse motion, no buttons

Returns
None

Remarks
This function requires a caller-specified one word parameter con
taining the new mask for enabled/disabled device events.

6-137

Category . 7 -
Function ·seH

Purpose
Sets the Pointer Shape

Parameter Packet Format

Fie Id

Buffer length

Columns

Rows

Column Hot Spot

Row Hot Spot

Data Packet Format

Length

WORD

WORD

WORD

WORD

WORD

The format is dependent on the mode of the display.
Remarks section in this call.

Where

Buffer length
is the length of pointer image buffer.

Columns
is the width in columns of pointer image.

Rows
is the height in rows of pointer image.

Column Hot Spot

0 1 +,... +h,...
11v1v1 LV Liiv

is the column offset within pointer image to hotspot.

Row Hot Spot
is the row offset within pointer image to hotspot.

Returns
None

6-138

Category 7 -
Function 56H

Remarks
This function requires six caller specified parameters:

Mono & Text

Buffer length = (height in characters) *
(width in characters) * 2 * 2

= 1 * 1 * 2 * 2

Note: For text mode height and width must be 1, so length is always 4.

Graphics

Buffer length = (height in pels) *
(width in pels) * (bits per pel) * 2 I 8

Note: Width (width in pels) must be a multiple of 8.

Modes 4 & 5 (328 x 288)

Buffer length = (height) * (width) * 2 * 2 / 8

Mode 6 (648 x 288)

Buffer length = (height) * (width) * 1 * 2 / 8

Note: Length calculations produce byte boundary buffer sizes.

All of the pointer definition record fields and the pointer shape buffer
are validated using the session's mode table values. The parameter
values must be the same orientation as the current session display
mode:

• graphics = pixel values
• text = character values

The data packet is a far pointer to an area in application storage con
taining the pointer image buffer.

The pointer image buffer format is dependent on the mode of the
display. For currently supported modes the buffer always consists of
the "and pointer image data" followed by the "XOR pointer image
data" The buffer always describes only one display plane.

The parameter packet is a far pointer to an input pointer definition
record.

6-139

Category 7 .. ~
Function 57H

Purpose
Frees the Mouse to Draw the Pointer anywhere on the Screen

Parameter Packet Format
None

Data Packet Format
None

Returns
None

Remarks
This function checks the pointer position, frees it if necessary, and
allows it to draw anywhere on the screen.

6-140

Purpose

Category 7 -
Function 58H

Restricts the Mouse from Pointer Drawing in Specified Area(s) of the
Screen

Parameter Packet Format

Fie Id

Left Row Position

Left Column Position

Right Row Position

Right Column Position

Data Packet Format
None

Returns
None

Remarks

Length

WORD

WORD

WORD

WORD

This function requires one caller specified parameter. This param
eter is an address pointing to a 8-byte structured buffer. This buffer
defines the collision area that will be protected from being over
written by system pointer draw operations.

Values must be specified in either character or pixel values,
depending on the current mode setting of the display.

The data packet is a far pointer to an area in application storage
where a collision area definition record will be read by the mouse
device driver.

If the entire screen is specified, this function disables pointer drawing
for the session.

6-141

Category 7 -
Function 59H

Purpose
Specifies/Replaces the Pointer Position

Parameter Packet Format

Fie Id

Row Position

Column Position

Data Packet Format
None

Row Position

Length

WORD

WORD

The new row coordinate pointer screen position.

Column Position
The new column coordinate pointer screen position.

The coordinate values are display mode dependent. Pixel values
must be used if the display is in graphics mode. Character posi
tion values must be used if the display is in text mode.

Returns

None

Remarks
This function does not override functions 57H and 58H.

If the pointer is directed into a restricted area, it remains invisible
until moved out of the area or until the area is freed of restrictions.

The parameter packet is a far pointer to a structure in application
storage where the mouse device driver will read coordinate posi
tions.

6-142

Category 7 -
Function SAH

Purpose
Specifies the Pointer Draw Device Driver Address (OS/2 mode only)

Parameter Packet Format

Fie Id

Pointer Entry

Pointer OS

Data Packet Format
None

Where

Pointer Entry

Length

DWORD

DWORD

Contains two 1-word fields whose format is as fol lows:

Word 0 = Pointer Draw Rtn Device Driver's Entry Point Offset

Word 1 = Pointer Draw DD Entry Point Selector

Pointer DS
Contains two 1-word fields whose format is as follows:

Word O = Reserved = O

Word 1 = Pointer Draw Rtn Device Driver's Data Segment
selector

Returns
None

6-143

Category 7 -
Function 5AH

Remarks
This parameter packet is a far pointer to a structure in application
storage where the mouse device driver will read the selector : offset
of the entry point of the session's pointer draw routine. The pointer
image draw routine is an installed pseudo character device driver.
The mouse router/handler must:

• OPEN the pointer draw device driver.
• Query the pointer draw device driver for the address of its entry

point.
• Pass the resulting address of the pointer draw entry point to the

mouse device driver using the IOCtl described above.

The mouse device driver issues a far call to the pointer draw device
driver when ever a mouse interrupt occurs that requires action con
cerning the pointer image.

In addition, the mouse device driver may call the pointer draw routine
as a result of some action on the part of the application, such as:

• MouDrawPtr
• MouRemovePtr
• MouSetPtrPos
• MouSetPtrShape
• MouGetPtrShape

This function is applicable in the OS/2 mode only.

6-144

Purpose

Category 7 -
Function SBH

Specifies the Pointer Draw Device Driver Address (DOS mode only)

Parameter Packet Format

Fleld

Pointer Entry

Pointer OS

Data Packet Format
None

Where

Pointer Entry

Length

DWORD

DWORD

Contains two 1-word fields whose format is:

Word 0 =

Word 1 =
Pointer Draw Rtn Device Driver's Entry Point Offset
Pointer Draw Rtn Device Driver's Entry Point
Selector

Pointer DS
Entry contains two 1-word fields whose format is:

Word 0 =
Word 1 =

Returns
None

Reserved = 0
Pointer Draw Rtn Device Driver's Data Segment
Selector

6-145

Category 7 -
Function 5BH

Remarks

This IOCtl is for the DOS execution environment only.

This is the same structure passed by the OS/2 IOCtl.

This IOCtl is issued by the Shell/Session Manager at the end of
Syslnit.

The call passes to the mouse device driver the address of the entry
point of a pointer draw routine for DOS execution environment
display support.

The data is passed as (selector: offset) pairs. The DOS execution
environment portion of the device driver uses the VirtToPhys and
PhysToVirt OS/2 calls to convert this address to the (segment: offset)
real address for use in the DOS execution environment.

The parameter packet is a far pointer to a structure in application
storage where the mouse device driver Will read the selector : offset
of the entry point of the DOS execution environment session's pointer
draw routine.

6-146

Purpose

Category 7 -
Function SCH

Specifies a Subset of the Current Mouse Device Driver Status Flags

Parameter Packet Format

I Fleld

Status Mask

Data Packet Format
None

Where

Status Mask

Length

WORD

is defined with the bit level definitions as follows:

High Byte

Bit Meaning
7-2 Reserved = O
1 Set if mouse data returned in mickeys, not display units
0 Set if the interrupt level pointer draw routine is not called

Low Byte

Bit Meaning
7-0 Reserved = 0

A set bit is a value of 1.

Returns
None

6-147

Category 7 -
Function SCH

Remarks
This function is the complement to 62H.

The parameter packet is a far pointer to an application area where
the Mouse Device Driver will read a one-word input device status
mask. Only the high byte of this one-word device status mask may be
set.

6-148

Purpose

Category 7 -
Function &OH

Indicates Number of Buttons Supported by the Device Driver

Parameter Packet Format
None

Data Packet Format

Fie Id

Number Supported

Where

Number Supported

Length

WORD

the data packet is a far pointer to word in application storage
where the mouse device driver will write a one-word return value.
Return values will be in the range of:

1 = one-button support
2 = two-button support
3 = three-button support

Returns
None

Remarks
This function requires a caller-specified address designating where
the device driver can write a one-word return value.

6-149

_ Category 7 -
Function 61 H

Purpose
Indicates Mouse Setting for the Number of Mickeys/Centimeter

Parameter Packet Format
None

Data Packet Format

Fie Id

Mickeys/Centi meter

Where

Mickeys/Centimeter

Length

WORD

the data packet is a far pointer to a word in application storage
where the mouse device driver will write a return value. Return
values will be in the range of:

0 < number of mickeys/centimeter < = (32K - 1)

Returns
None

Remarks
None

6-150

Purpose

Category 7 -
Function 62H

Indicates the Current Pointer Device Driver Status Flags

Parameter Packet Format
None

Data Packet Format

I Fleld

Status Flags

Where

Status Flags
High Byte

Bit Meaning
7-2 Reserved = O

Length

WORD

1 Set if mouse data returned in mickeys
0 Set if the interrupt level pointer draw routine is not called

Low Byte

Bit Meaning
7-4 Reserved = O
3 Set if pointer draw routine disabled by unsupported mode
2 Set if flush in progress
1 Set if block read in progress
O Set if event queue busy with 1/0

A set bit is a value of 1.

Returns
None

6-151

Category 7 -
Function 62H

Remarks

The data packet is a far pointer to a word in application storage
where the mouse device driver will write a one-word return value.
Return values have the following meaning:

This function is the complement to 5CH.

6-152

Purpose
Reads the Mouse Event Queue

Parameter Packet Format

I Field

Read Type

Data Packet Format

Fie Id

Event Mask

Time

Row Position

Column Position

Where

Read Type

Category 7 -
Function 63H

Length

WORD

Length

WORD

DWORD

WORD

WORD

is only used to determine the type of action to be taken if no event
queue data is available. The values may be:

O = Block the process (Wait) until event data is available

1 = Return a NULL record (No Wait) for the request.

The data packet is a far pointer to an event queue element record
structure in application storage to be written into.

Event Mask
(See function 65H)

Time
is Event time stamp in milliseconds

6-153

Category 7 -
Function 63H

Row Position
is Pointer row coordinate

Column Position
is Pointer column coordinate

Returns
None

Remarks
This function requires two caller-specified parameters:

1. An address where the Mouse Device Driver will write the event
queue's FIFO element 10-byte record contents.

2. A one-word value indicating the type of read operation to be per
formed. The read type is only used to determine the type of
action to be taken if no event queue data is available.

6-154

Category 7 -
Function 64H

Purpose
Indicates the Current Event Queue Status

Parameter Packet Format
None

Data Packet Format

Fie Id

Element Number

Queue Number

Where

Element Number

Length

WORD

WORD

is where the mouse device driver will write the current number of
event queue elements. The return value is a one-word value in
the range of:

0 <=value<= MaxNumQueueElements.

Queue Number
is where the mouse device driver will write a one-word return
value for the MaxNumQueueElements.

Returns
None

Remarks
This function returns both the current number of queued elements in
the event queue and the maximum number of elements allowed in an
event queue.

6-155

Category 7 ~
Function 65H

Purpose
Indicates the Current Mouse Event Mask

Parameter Packet Format
None

Data Packet Format

I Field

Event Mask

Where

Event Mask
has the following bit level definitions:

Da
7-15
6
5
4
3
2

Afea;;i;;g
Reserved = O
Set if button 3 is down
Set if motion with button 3 down
Set if button 2 is down
Set if motion with button 2 down
Set if button 1 is down

Length

WORD

1
0

Set if motion with button 1 down
Set if all mouse motion, no buttons

Returns
None

Remarks
This function requires a caller specified address designating where
the mouse device driver will write a one-word return value. The
return values could be any valid combination of enabled/disabled
event flags.

6-156

Purpose

Category 7 -
Function 66H

Indicates the Current Mouse Scaling Factors

Parameter Packet Format
None

Data Packet Format

Fie Id

Row Data

Column Data

Where

Row data
is the row coordinate scaling factor.

Column data
is the column coordinate scaling factor.

Length

WORD

WORD

The scaling factor values are positive integers in the range of:

O < value < = (32K - 1)

Returns
None

Remarks
This call does not require input parameters. This function requires
one caller specified address. The mouse device driver will place a
one-word return value at each of the given addresses.

• The first address will receive the row coordinate scaling factor
• The second address will receive the column coordinate scaling

factor.

6-157

Category 7 -
Function 66H

The scaling factor values are positive integers in the range of:

0 < value < = (32K - 1)

The data packet is a far pointer to a two-word structure in application
storage where the mouse device driver will write two one-word return
values.

6-158

Purpose

Category 7 -
Function 67H

Indicates the Current Pointer Screen Position

Parameter Packet Format
None

Data Packet Format

Fie Id

Row Position

Column Position

Where

Row Position
Row coordinate pointer screen position.

Column Po•ition

Length

WORD

WORD

Column coordinate pointer screen position.

The coordinate values are display mode dependent. Pixel values
are returned if the display is in graphics mode. Character position
values are returned if the display is in text mode.

Returns
None

Remarks
This call does not require input parameters. The data packet is a far
pointer to a structure in application storage where the mouse device
driver will write coordinate positions.

6-159

Category· 7 -
Function 68H

Purpose
Indicates the Current Pointer Shape

Parameter Packet Format

Field

Buffer Length

Columns

Rows

Column Hot Spot

Row Hot Spot

Data Packet Format

I Field

FAR Pointer

Where

Buffer Length
Length of pointer image buffer

Length

WORD

WORD

WORD

WORD

WORD

Length

DWORD

Exit Error: if the input Buffer Length value is smaller than the
required storage to perform the data copy then the Buffer Length
field will be returned with the minimum required pointer shape
buffer length. An error code is also returned for an invalid param
eter

Exit Normal: if the input Buffer Length value is greater than or
equal to the amount of storage required for the pointer shape
image then the current pointer information is returned in the
pointer data record and the pointer shape image data is copied
into the user specified Data address.

6-160

Category 7 -
Function 68H

Columns
Width in columns of pointer image

Rows
Height in rows of pointer image

Column Hot Spot
Column offset within pointer image to hotspot

Row Hot Spot
Row offset within pointer image to hotspot

Returns
On input the only pointer definition record field used by the mouse
device driver is the Buffer Length field. The Buffer Length value must
specify the length of the user provided shape buffer, pointed to by the
Data parameter address.

Remarks
This buffer is described by the pointer definition record and for
normal conditions consists of the Screen AND and Pointer XOR
masks.

6-161

category 8 Logical Disk Control IOCtl Commands

Following is a summary of Category 8 descriptions:

Function
OOH
01H
02H
03H
20H
21H
22H
43H
44H
45H
5FH
63H
64H
65H

6-162

Description
Lock drive
Unlock drive
Redetermine media
Set logical map
Block removable
Get logical map
Reserved
Set device parameters
Write track
Format and verify track
Reserved
Get device parameters
Read track
Verify track

Purpose
Lock Drive

Category 8 -
Function OOH

The operation of locking a drive is used to exclude 110 by another
process on the volume in the drive. The Lock Drive call will
succeed only if there is one file handle open on the volume in the
drive; that is, the file handle on which this DosDevlOCtl call is
issued. This is necessary since the desired result is to exclude all
other 110 to this volume until the Unlock Drive call is issued.

Parameter Packet Format

Fie Id

Command Information

Data Packet Format

I Field

Set To O

Where

Command Information
is reserved and must be set to 0.

Returns
None

Remarks
None

Length

BYTE

Length

BYTE

6-163

Category. :s ·. ·~
Function· 01H

Purpose
Unlock Drive

Parameter Packet Format

Fie Id

Command Information

Data Packet Format

I Fleld

Set To O

Where

Command Information
is reserved and must be set to 0.

Returns
None

Remarks

Length

BYTE

Length

BYTE

The locked volume represented by the file handle on which this
DosDevlOCtl call is issued must be in the drive.

6-164

Purpose

Category 8 -
Function 02H

Redetermine Media -- This function causes OS/2 to re-generate the
internal ID for the volume currently in the drive, and associate this ID
with the specified handle.

Parameter Packet Format

Fie Id

Command Information

Data Packet Format

I Fleld

Set To O

Where

Command Information
is reserved and must be set to 0.

Returns
None

Remarks

Length

BYTE

Length

BYTE

The caller must have the disk or diskette locked when calling this
function. Otherwise, the call will fail with the error
ERROR_LOCK_ VIOLATION.

The caller can have only one file open to refer to the disk or diskette.
If other processes have the volume open, or the calling process has
opened the volume multiple times, the call will fail returning
ERROR_DRIVE_BUSY.

6-165

Category 8 -
Function 03H

Purpose
Set Logical Map

Parameter Packet Format

Fie Id

Command Information

Data Packet Format

Fie Id

Logical Drive Number

Where

Command Information
is reserved and must be set to 0.

Logical Drive Number

Length

BYTE

Length

BYTE

on entry logical drive number (1 =A, 2 = 8, etc) is specified.

on return, this byte specifies the logical drive currently mapped to
the drive that the specified file handle is opened on. A 0 is
returned if there is only one logical drive mapped onto this phys
ical drive.

Returns
None

Remarks
None.

6-166

Purpose
Block Removable

Parameter Packet Format

Fie Id

Command Information

Data Packet Format

I Fleld

Data

Where

Command Information
is reserved and must be set to 0.

Data

Category 8 -
Function 20H

Length

BYTE

Length

BYTE

on return, the data byte is set accordingly:

O = removable media
1 = nonremovable media

Returns
None

Remarks
None

6-167

Category· 8 -
Function·.·21H

Purpose
Get Logical Map

Parameter Packet Format

Field

Command Information

Data Packet Format

Fie Id

Logical Drive Number

Where

Command Information
is reserved and must be set to 0.

Logical Drive Number

Length

BYTE

Length

BYTE

on entry Logical Drive Number (1 =A, and others).

on return this byte is filled with the logical drive is currently
mapped to the drive the specified handle is opened on. A 0 is
returned if there is only one logical drive mapped onto this phys
ical drive.

Returns
None

Remarks
None

6-168

Purpose
Set Device Parameters

Parameter Packet Format

Fie Id

Command Information

Data Packet Format

Fie Id

Extended BPB for devices

Number of cylinders

Device type

Device attributes

Where

Command Information

Category 8 -
Function 43H

Length

BYTE

Length

31 BYTES

WORD

BYTE

WORD

the two low bits of the command byte are used to indicate one of
three possible actions:

Bit
Values Description

00 Revert to building the BPB off the medium for all subse
quent Build BPB calls. This is used to reset the device
parameters back to their original state.

01 Change the default BPB for the physical device. This is
not used for the medium and should be used with
caution.

6-169

Category 8 -
Function 43H

10 Change the BPB for the medium to the specified BPB
and return the new BPB as the BPB tor the medium for
all subsequent Build BPB calls. This is used for the
initial set device parameters of the medium.

All other bits are reserved and must be set to 0.

Extended BPB
The extended BPB has the following format:

Fie Id Length

Bytes Per Sector WORD

Sectors Per Cluster BYTE

Reserved Sectors WORD

Number of FATs BYTE

Root Dir Entries WORD

Total Sectors WORD

Media Descriptor BYTE

Sectors Per FAT WORD

Sectors Per Track WORD

Number Of Heads WORD

Hidden Sectors DWORD

Large Total Sectors DWORD

Reserved 6 BYTES

Number of cylinders
indicates the number of cylinders defined for the physical device.

Device type
field describes the physical layout of the device specified. It takes
one of the fol I owing values:

6-170

Value Meaning
0 48 TPI low density diskette drive
1 96 TPI high density diskette drive
2 Small (3 112 inch) (720KB) drive
3 8 Inch Single Density floppy drive
4 8 Inch Double Density floppy drive
5 Fixed disk
6 Tape drive
7 Other (other type of device)

Device attributes

Category 8 -
Function 43H

The device attributes is a bit field that returns various flag infor
mation about the specified drive:

Bit Description
O Removable media flag. If set, the media can be changed
1 Changeline flag. If set, the media cannot be removed.
All other bits are reserved and must be set to 0.

Returns
None

Remarks
None

6-171

Category 8· -
Functions 44H, 64H, 65H

Purpose
Write Track, Read Track, Verify Track.

These commands have the same parameter packet.

Parameter Packet Format

Fie Id Length

Command Information BYTE

Head WORD

Cylinder WORD

First Sector WORD

Number of sectors WORD

1 Track Layout field BYTES

Data Packet Format
The data packet is a buffer. For the write call it contains the data to
be written. For a read call the buffer must be large enough to hold
requested data. For the verify call the data packet is not used.

I Field Length

Buffer BYTES

6-172

Category 8 -
Functions 44H, 64H, &SH

Where

Command Information
is a bit field as follows:

Bit Description

O Clear - Track layout contains non-consecutive sectors or
does not start with sector 1

Set -Track layout starts with sector 1 and contains only
consecutive sectors

Reserved All other bits are reserved and must be set to 0.

Head
is the physical head on the drive to perform the operation.

Cylinder
is the cylinder for the read/write/verify.

First Sector
is the logical sector number within the track layout table to start
the 110 operation.

Note that the sector numbers are based from 0. (For example,
the third sector is numbered 2.)

Number of Sectors
is the number of sectors to read/write/verify (up to the
maximum specified in the track table - the IOCtl subfunctions
will not step heads/tracks).

6-173

Category 8 -
Functions 44H, 64H, 65H

Track layout field
is as follows:

Fie Id

Sector number for sector 1

Sector size for sector 1

Sector number for sector 2

Sector size for sector 2

Sector number for sector 3

Sector size for sector 3

...

Sector number for sector n

Sector size for sector n

Reiurns
None

Remarks

Length

WORD

WORD

WORD

WORD

WORD

WORD

...

WORD

WORD

This call performs the operation on the device that is specified in
this request. The track table passed in on the call is used to deter
mine the sector number which is passed on to the disk controller for
the operation. In cases where the sectors are oddly numbered or are
non-consecutive, we break this request into N single sector oper
ations and read/write/verify one sector at a time. Note also that the
device driver will NOT correctly read a non-512 byte sector if the read
operation would generate a OMA violation error. Application writers
must be careful to make sure that this error does NOT occur.

The sector table that is specified is used to provide information that is
used during the READ/WRITE/VERIFY track operations.

6-174

Purpose
Format and Verify a Track on a Drive

Parameter Packet Format

Fie Id

Command Information

Head

Cylinder

Reserved

Number of sectors

Format Track Table

Data Packet Format

I Fleld

Set To O

Where
The following fields are defined:

Command Information
is a bit field as follows:

Bit Description

Category 8 -
Function 45H

Length

BYTE

WORD

WORD

WORD

WORD

BYTES

Length

BYTE

0 Clear - Track layout contains non-consecutive sectors or
does not start with sector 1

Set - Track layout starts with sector 1 and contains only
consecutive sectors

All other bits are reserved and must be set to 0.

6-175

Category 8 -
Function 45H

Head
is the physical head on the drive to perform the operation.

Cylinder
is the cylinder for the operation.

Number of Sectors
is the number of sectors on the track being formatted.

Format Track Table
is the format track table contains four byte tuples. Each tuple is in
the form (c,h,r,n) with c = cylinder number, h = head number, r
= sector id, and n = bytes per sector.

n bytes I sector
0 128
1 256
2 512
3 1024

Returns
None

Remarks
This routine formats and verifies the track specified according to the
information passed in the Track Layout field. The track layout is
passed to the controller and the controller performs the formatting.
Note that some controllers do NOT support formatting tracks with
varying sector sizes, so in general the application writer must take
care to be sure that the sector sizes specified in the Track Layout
table are al I the same.

There is a 4-tuple for each sector in the track to be formatted. Both
the head and cylinder numbers must be consistent within the tuple
and with the corresponding parameter packet field.

6-176

Purpose
Get Device Parameters

Parameter Packet Format

Field

Command Information

Data Packet Format

Field

Extended BPB for device

Number of cylinders

Device type

Device attributes

Where
The following fields are defined:

Command Information
is a bit field as follows:

For bit 0:

Value Description

Category 8 -
Function 63H

Length

BYTE

Length

31 BYTES

WORD

BYTE

WORD

O Return the recommended BPB for the drive. The recom
mended BPB for the drive is the BPB for the physical
device.

1 Return the BPB for the media currently in the drive

Extended BPB for device
The device driver maintains two BPB's for each drive, one is the
current BPB (that corresponds to the media in the drive), and the
other is a recommended BPB that is based on the type of media
that corresponds to the physical device (for a high density drive,

6-177

Category 8 -
Function 63H

that is a BPB for a 96 tracks-per-inch (TPI) floppy, for a low
density drive it is the BPB for a 48 TPI floppy, etc). The low bit of
the command information field indicates which BPB the applica
tion would li!<e to see.

Number of cylinders
The number of cylinders indicates the number of cylinders defined
for the physical device.

Device type
The device type field describes the physical layout of the device
specified. It takes one of the following values:

Value Meaning
0 48 TPI low density diskette drive
1 96 TPI high density diskette drive
2 Small (3 1/2 inch) (720KB) diskette drive
3 8 Inch Single Density diskette drive
4 8 Inch Double Density diskette drive
5 Fixed disk
6 Tape drive
7 Other (other type of device)

Device attributes
The device attributes is a bit field that returns various flag infor
mation about the specified drive:

Bit Description
O Removable media flag If set, the media can be changed
1 Changeline flag If set, the media cannot be removed

Returns
None

Remarks
All other bits are reserved and must be set to 0.

6-178

Category 9 Physical Disk Control IOCtl Commands

Category 9 is a category which is used to access physical
partitionable fixed disks.

The handle, used for Category 9 commands is the handle returned by
the DosPhysicalDisk (function 2) API function call. This handle is
used to tell the system which physical disk the IOCtl command is for.

The physical disk control commands relate to the entire partitionable
fixed disk. Direct track and sector 110 begin at the beginning of the
physical drive. Function 63H, get physical device parameters,
describes the entire physical device.

Following is a summary of Category 9 descriptions:

Function
OOH
01H
44H
63H
64H
65H

Description
Lock physical drive
Unlock physical drive
Physical write track
Get physical device parameters
Physical read track
Physical verify track

6-179

Catego.ry 9 -
Function OOH

Purpose
Lock Physical Drive

Parameter Packet Format

Fie Id

Command Information

Data Packet Format

I Fleld

Set To O

Where

Command Information
is reserved and must be set to 0.

Returns
None

Remarks

Length

BYTE

Length

BYTE

All the logical units on the physical drive are affected as well.

6-180

Purpose
Unlock Physical Drive

Parameter Packet Format

Fie Id

Command Information

Data Packet Format

I Field
SetToO

Where

Command Information
is reserved and must be set to 0.

Returns
None

Remarks

Category 9 -
Function 01 H

Length

BYTE

Length

BYTE

All the logical units on the physical drive are affected as well.

6-181

Category 9 -
Functions44H, .. 64H, &SH

Purpose
Physical Write Track, Physical Read Track, Physical Verify Track

Parameter Packet Format
These commands have the same parameter packet.

Fie Id Length

Command Information BYTE

Head WORD

Cylinder WORD

First Sector WORD

Number of sectors WORD

Track Layout Table BYTES

Data Packet Format
The data packet is a buffer. For the WRITE call it contains the data to
be written. For a READ call the buffer must be large enough to hold
requested data. For the VERIFY call the data packet is not used.

I Field Length

Buffer BYTES

Where

Command Information
is a bit field as follows:

Bit Description
O O (Clear) - Track layout contains non-consecutive

sectors or does not start with sector 1

6-182

Category 9 -
Functions 44H, 64H, &SH

1 (Set) - Track layout start with sector 1 and contains
only consecutive sectors

All other bits are reserved and must be 0.

Head
is the physical head on the drive to perform the operation.

Cylinder
is the cylinder for the read/write/verify.

First Sector
is the logical sector number within the track layout table to start
the 110 operation.

Note that the sector numbers are based from 0. (For example,
the third sector is numbered 2.)

Number of Sectors
The number of sectors to read/write/verify (up to the maximum
specified in the track table - the IOCtl subfunctions will NOT step
heads/tracks).

Track Layout Table
The track layout table is as follows:

Fleld Length

Sector number for sector 1 WORD

Sector size for sector 1 WORD

Sector number for sector 2 WORD

Sector size for sector 2 WORD

Sector number for sector 3 WORD

Sector size for sector 3 WORD

... ...
Sector number for sector N WORD

6-183

Category 9 -
Functions 44H, 64H, &SH

Fie Id

Sector size for sector N

Returns
None

Remarks

Length

WORD

This call will perform the operation on the physical drive that is speci
fied in this request. It works like the similar Category 8 command
except that the 1/0 is done offset from the beginning of the physical
drive instead of from the beginning of the extended volume associ
ated with the unit number (category 8).

The track table passed in on the call is used to determine the sector
number which is passed on to the disk controller for the operation. In
cases where the sectors are oddly numbered or are non-consecutive
the request is broken into N single sector operations, and
read/written/verified one sector at a time. Note also that the device
driver will not correctly read a non 512 byte sector if the read opera
tion would generate a OMA violation error. Application writers must
be careful to make sure that this error will not occur.

The sector table that is specified is used to provide information that is
used during the READ/WRITE/VERIFY track operations.

6-184

Purpose
Get Physical Device Parameters

Parameter Packet Format

Fie Id

Command Information

Data Packet Format

Fie Id

Reserved

Number of Cylinders

Number of Heads

Number of Sectors per Track

Reserved

Reserved

Reserved

Reserved

Where

Command Information
is reserved and must be set to 0.

Number of Cylinders

Category 9 -
Function 63H

Length

BYTE

Length

WORD

WORD

WORD

WORD

WORD

WORD

WORD

WORD

is where the number of cylinders on the physical drive are
returned.

Number of Heads
is where the number of heads on the physical drive are returned.

6-185

Category 9 -
Function 63H

Number of Sectors per Track
is where the number of sectors per track on the physical drive are
returned.

Returns
None

Remarks
The data values returned apply to the entire physical disk.

6-186

Category 10 Character Device Monitor IOCtl
Commands

Following is a summary of Category 10 descriptions:

Function Description
40H Register a Monitor

6-187

Category. 1 O
Function 40H

Purpose
Register a Monitor

Parameter Packet Format

Fie Id

Command Information

Data Packet Format

Fie Id

Placement flag

Index

Arlrlrccc nf inn• 1+ h11ffcr
• ""9""91 '-'....,""' V'I 11 lt'W• WWllVI

Offset of output buffer

Where

Command Information
is reserved and must be set to 0.

Placement flag

Length

BYTE

Length

WORD

WORD

n\Atncn J I.I' •• "'."'""'

WORD

is the parameter described in DosMonReg. Values can be 0, 1, or
2.

Index
is a device driver dependent field.

Address of input bu"er
is the monitor input buffer initialized by the monitor dispatcher
and used by DosMonRead.

O"setoloutputbu"er
is the monitor output buffer initialized by the monitor dispatcher
and used by DosMonWrite.

6-188

Category 10 -
Function 40H

Note: Refer to DosMonRead, Dos Mon Reg and Dos Mon Write in
Chapter 2, for additional information concerning the device monitor.

Returns
None

Remarks
These fields are used by the device drivers to formulate the
MonRegister calls (DevHlp).

6-189

Category 11 General Device Control IOCtl
Commands

Following is a summary of Category 11 descriptions:

Function
01H
02H
60H

6-190

Description
Flush input buffer
Flush output buffer
Query monitor support

Purpose
Flush Input Buffer.

Parameter Packet Format

Fie Id

Command Information

Data Packet Format

I Fleld

Set To O

Where

Command Information
is reserved and must be set to 0.

Returns
None

Remarks
None

Category 11 -
Function 01 H

Length

BYTE

Length

BYTE

6-191

Category 11
Function 02H

Purpose
Flush output buffer.

Parameter Packet Format

Fie Id

Command Information

Data Packet Format

I Fleld

Set To 0

Where

Command Information
is reserved and must be set to 0.

Returns
None

Remarks
None

6-192

Length

BYTE

Length

BYTE

Purpose
Query monitor support.

Parameter Packet Format

Fie Id

Command Information

Data Packet Format

I Fleld

SetTo 0

Where

Command Information
is reserved and must be set to 0.

Returns
None

Remarks

Category 11 -
Function &OH

Length

BYTE

Length

BYTE

This request is used to query a device driver for monitor support.

The device driver should return the system error,
Monitors-Not-Supported, if it does not support character monitors. If
monitors are supported, then it should return No-Error (OOH).

6-193

6-194

Appendix A. IBM OS/2 Return Codes

Number/Return Code/Definition
0 NO_ERROR

no error occurred
1 ERROR_INVALID_FUNCTION

invalid function number
2 ERROR_FILE_NOT _FOUND

file not found
3 ERROR_PATH_NOT_FOUND

path not found
4 ERROR_ TOO _MANY_ OPEN_FILES

too many open files (no handles left)
5 ERROR_ACCESS_DENIED

access denied
6 ERROR_INVALID_HANDLE

invalid handle
7 ERROR_ARENA_TRASHED

memory control blocks destroyed
8 ERROR_NOT_ENOUGH_MEMORY

insufficient memory
9 ERROR_INVALID_BLOCK

invalid memory block address
10 ERROR_BAD_ENVIRONMENT

invalid environment
11 ERROR_BAD_FORMAT

invalid format
12 ERROR_INVALID_ACCESS

invalid access code
13 ERROR_INVALID_DATA

invalid data
14 Reserved
15 ERROR_INVALID_DRIVE

invalid drive was specified
16 ERROR_ CURRENT _DIRECTORY

attempt to remove current directory
17 ERROR_NOT _SAME_DEVICE

not same device
18 ERROR_NO _MORE_FILES

no more files

A-1

19 ERROR_ WRITE_PROTECT
attempt to write on write protected diskette

20 ERROR_BAD_UNIT
unknown unit

21 ERROR_NOT _READY
drive not ready

22 ERROR_BAD_COMMAND
unknown command

23 ERROR_ CRC
data error (CRC)

24 ERROR_BAD _LENGTH
bad request structure length

25 ERROR_SEEK
seek error

26 ERROR_NOT _DOS_DISK
unknown media type

27 ERROR_SECTOR_NOT _FOUND
sector not found

28 ERROR_ OUT _OF _PAPER
printer out of paper

29 ERROR_WRITE_FAULT
write fault

30 ERROR_READ_FAUL T
read fault

31 ERROR_GEN_FAILURE
general failure

32 ERROR_SHARING_VIOLATION
sharing violation

33 ERROR_LOCK_ VIOLATION
lock violation

34 ERROR_WRONG_DISK
invalid disk change

35 ERROR_FCB_UNAVAILABLE
FCB unavailable

36 ERROR_SHARING_BUFFER_EXCEEDED
sharing buffer overflow

37-49 Reserved
50 ERROR_NOT _SUPPORTED

network request not supported
65 ERROR_NETWORK_ACCESS_DENIED

access denied
73-79 Reserved

A-2

80 ERROR_FILE_EXISTS
file exists

81 ERROR_DUP_FCB
Reserved

82 ERROR_CANNOT _MAKE
cannot make directory entry

83 ERROR_FAIL_l24
fail on INT 24

84 ERROR_OUT _OF _STRUCTURES
too many redirections

85 ERROR_ALREADY _ASSIGNED
duplicate redirection

86 ERROR_INVALID_PASSWORD
invalid password

87 ERROR_INVALID_PARAMETER
invalid parameter

88 ERROR_NET _WRITE_FAULT
network device fault

89 ERROR_NO_PROC_SLOTS
no process slots available

90 ERROR_NOT _FROZEN
system error

91 ERROR_ TSTOVFL
timer service table overflow

92 ERROR_ TSTDUP
timer service table duplicate

93 ERROR_NO_ITEMS
no items to work on

95 ERROR_INTERRUPT
interrupted system call

100 ERROR_ TOO_MANY _SEMAPHORES
hit user/open semaphore limit exceeded

101 ERROR_EXCL_SEM_ALREADY _OWNED
exclusive semaphore already owned

102 ERROR_SEM_IS_SET
SemClose found semaphore set

103 ERROR_TOO_MANY_SEM_REQUESTS
too many exclusive semaphore requests

104 ERROR_INVALID_AT_INTERRUPT_TIME
operation invalid at interrupt time

105 ERROR_SEM_OWNER_DIED
previous semaphore owner terminated without freeing
semaphore

A-3

106 ERROR_SEM_USER_LIMIT
semaphore limit exceeded

107 ERROR_DISK_CHANGE
insert drive B disk into drive A

108 ERROR_DRIVE_LOCKED
drive locked by another process

109 ERROR_BROKEN_PIPE
write on pipe with no reader

110 ERROR_OPEN_FAILED
open/create failed due to explicit fail command

111 ERROR_BUFFER_OVERFLOW
buffer passed to system call too small to hold return data

112 ERROR_DISK_FULL
not enough space on the disk

113 ERROR_NO_MORE_SEARCH_HANDLES
cannot allocate another search structure and handle

114 ERROR_INVALID_TARGET_HANDLE
target handle in DosDupHandle invalid

115 ERROR_PROTECTION_ VIOLATION
bad user virtual address

116 ERROR_ VIOKBD_REQUEST
error on display write or keyboard read

117 ERROR_!NVAUD_CATEGORY
category for DevlOCTL not defined

118 ERROR_INVALID_VERIFY_SWITCH
invalid value passed for verify flag

119 ERROR_BAD_DRIVER_LEVEL
Level four driver not found

120 ERROR_CALL_NOT _IMPLEMENTED
invalid function called

121 ERROR_SEM_TIMEOUT
time out occurred from semaphore API function

122 ERROR_INSUFFICIENT _BUFFER
data buffer too small

123 ERROR_INVALID_NAME
illegal character or malformed file system name

124 ERROR_INVALID_LEVEL
unimplemented level for information retrieval or setting

125 ERROR_NO_VOLUME_LABEL
no volume label found with DosQFslnfo command

126 ERROR_MOD_NOT_FOUND
module handle not found with getprocaddr,getmodhandle

A-4

127 ERROR_PROC_NOT _FOUND
procedure address not found with getprocaddr

128 ERROR_WAIT_NO_CHILDREN
CWait finds no children

129 ERROR_CHILD_NOT _COMPLETE
CWait children not terminated

130 ERROR_DIRECT _ACCESS_HANDLE
handle operation invalid for direct disk access handles

131 ERROR_NEGATIVE_SEEK
attempted seek to negative offset

132 ERROR_SEEK_ON_DEVICE
application tried to seek on device or pipe

133 ERROR_IS_JOIN_ TARGET
drive has previously joined drives

134 ERROR_IS_JOINED
drive is already joined

135 ERROR_IS_SUBSTED
drive is already substituted

136 ERROR_NOT _JOINED
cannot delete drive that is not joined

137 ERROR_NOT_SUBSTED
cannot delete drive that is not substituted

138 ERROR_JOIN_TO_JOIN
cannot join to a joined drive

139 ERROR_SUBST_TO_SUBST
cannot substitute to a substituted drive

140 ERROR_JOIN_TO_SUBST
cannot join to a substituted drive

141 ERROR_SUBST_TO_JOIN
cannot substitute to a joined drive

142 ERROR_BUSY _ORIVE
specified drive is busy

143 ERROR_SAME_DRIVE
cannot join or substitute a drive to a directory on the same
drive

144 ERROR_DIR_NOT _ROOT
directory must be a subdirectory of the root

145 ERROR_DIR_NOT _EMPTY
directory must be empty to use join command

146 ERROR_IS_SUBST_PATH
path specified is being used in a substitute

147 ERROR_IS_JOIN_PATH
path specified is being used in join

A-5

148 ERROR_PATH_BUSY
path specified is being used by another process

149 ERROR_IS_SUBST_TARGET
cannot join or substitute drive having directory that is target
of a previous substitute

150 ERROR_SYSTEM_TRACE
system trace error

151 ERROR_INVALID_EVENT_COUNT
DosMuxSemWait errors

152 ERROR_TOO_MANY_MUXWAITERS
system limit of 100 entries was reached

153 ERROR_INVALID_LIST_FORMAT
invalid list format

154 ERROR_LABEL_TOO_LONG
volume label too big

155 ERROR_TOO_MANY_TCBS
cannot create another TCB

156 ERROR_SIGNAL_REFUSED
Signal refused

157 ERROR_DISCARDED
segment is discarded

158 ERROR_NOT_LOCKED

159 ERROR_BAD_THREADID_ADDR
bad thread id address

160 ERROR_BAD_ARGUMENTS
bad environment pointer

161 ERROR_BAD_PATHNAME
bad pathname passed to exec

162 ERROR_SIGNAL_PENDING
signal already pending

163 ERROR_UNCERTAIN_MEDIA
ERROR_l24 mapping

164 ERROR_MAX_ THRDS_REACHED
No more proc slots

165 ERROR_MONITORS_NOT _SUPPORTED
ERROR_l24 mapping

180 ERROR_INVALID_SEGMENT_NUMBER
invalid segment number

181 ERROR_INVALID_CALLGATE
invalid call gate

182 ERROR_INVALID_ORDINAL
invalid ordinal

A-6

183 ERROR_ALREADY_EXISTS
shared segment already exists

184 ERROR_NO_CHILD_PROCESS
no child process to wait for

185 ERROR_CHILD_ALIVE_NOWAIT
NoWait specified & child alive

186 ERROR_INVALI D _FLAG_NU M BER
invalid flag number

187 ERROR_SEM_NOT _FOUND
semaphore does not exist

188 ERROR_INVALID_STARTING_CODESEG
invalid starting code segment, incorrect END (label)directive

189 ERROR_INVALID_STACKSEG
invalid stack segment

190 ERROR_INVALID_MODULETYPE
invalid module type - Dynamic link library file cannot be
used as an application. Application cannot be used as a
dynamic link library.

191 ERROR_INVALID_EXE_SIGNATURE
invalid EXE signature - File is DOS mode program or
improper program.

192 ERROR_EXE_MARKED_INVALID
EXE marked invalid - LINK detected errors when application
created.

193 ERROR_BAD_EXE_FORMAT
bad EXE format - File is DOS mode program or improper
program.

194 ERROR_ITERATED _DAT A_EXCEEDS_64k
iterated data exceeds 64K - More than 64K of data in one of
the segments of the file.

195 ERROR_INVALID_MINALLOCSIZE
invalid minimum allocation size - Size is specified to be less
than the size of the segment data in the file.

196 ERROR_DYNLINK_FROM_INVALID_RING
dynamic link from invalid ring - Ring 2 routine cannot link to
dynalink libraries.

197 ERROR_IOPL_NOT _ENABLED
IOPL not enabled - IOPL set to NO in CONFIG.SYS.

198 ERROR_INVALID_SEGDPL
invalid segment descriptor privilege level - can only have
privilege levels of 2 and 3

199 ERROR_AUTODATASEG_EXCEEDS_64k
automatic data segment exceeds 64K

A-7

200 ERROR_RING2SEG_MUST _BE_MOVABLE
ring 2 segment must be movable

201 ERROFLRELOC_CHAIN_XEEDS_SEGLIM
relocation chain exceeds segment limit

202 ERROR_INFLOOP _IN_RELOC_CHAIN
infinite loop in relocation chain segment

203 ERROR_ENVVAR_NOT_FOUND
environment variable not found

204 ERROR_NOT_CURRENT_CTRY
not current country

205 ERROR_NO_SIGNAL_SENT
no signal sent - No process in the command subtree has a
signal handler.

206 ERROR_FILENAME_EXCED_RANGE
filename/extension greater than 8.3

207 ERROR_RING2_STACK_IN_USE
ring 2 stack in use

208 ERROR_META_EXPANSION_TOO_LONG
meta expansion is too long

209 ERROR_INVALID_SIGNAL_NUMBER
invalid signal number

210 ERROR_ THREAD_ 1_1NACTIVE
inactive thread

211 ERROR_INFO_NOT_AVAILABLE
filesystem information not available for this file

212 ERROR_LOCKED
locked error

213 ERROR_BAD_DYNALINK
attempted to execute non family API in DOS mode

214 ERROR_ TOO_MANY _MODULES
too many modules

215 ERROR_NESTING_NOT _ALLOWED
nesting not allowed

303 ERROR_INVALID_PROCID
invalid process ID

304 ERROR_INVALID_PDELTA
invalid priority delta

305 ERROR_NOT _DESCENDANT
not descendant

306 ERROR_NOT _SESSION_MANAGER
requestor not session manager

307 ERROR_INVALID_PCLASS
invalid P class

A-8

308 ERROR_INVALID_SCOPE
invalid scope

309 ERROR_INVALID_ THREADID
invalid thread id

310 ERROR_DOSSUB_SHRINK
cannot shrink segment - DosSubSet

311 ERROR_DOSSUB_NOMEM
no memory to satisfy request - DosSubAlloc

312 ERROR_DOSSUB_OVERLAP
overlap of specified block with an allocated memory -
DosSubFree

313 ERROR_DOSSUB_:BADSIZE
bad size parameter - DosSubAlloc or DosSubFree

314 ERROR_DOSSUB_BADFLAG
bad flag parameter - DosSubSet

315 ERROR_DOSSUB_BADSELECTOR
invalid segment selector

316 ERROR_MR_MSG_TOO_LONG
message too long for buffer

317 ERROR_MR_MID_NOT _FOUND
message ID number not found

318 ERROR_MR_UN_ACC_MSGF
unable to access message file

319 ERROR_MR_INV _MSFG_FORMAT
invalid message file format

320 ERROR_MR_INV _IVCOUNT
invalid insertion variable count

321 ERROR_MR_UN_PERFORM
unable to perform function

322 ERROR_ TS_ WAKEUP
unable to wake up

323 ERROR_ TS_SEMHANDLE
invalid system semaphore

324 ERROR_ TS_NOTIMER
no timers available

326 ERROR_ TS_HANDLE
invalid timer handle

327 ERROR_ TS_DATETIME
date or time invalid

328 ERROR_SYS_INTERNAL
internal system error

329 ERROR_ QUE_ CURRENT _NAME
current queue name does not exist

A-9

330 ERROR_QUE_PROC_NOT _OWNED
current process does not own queue

331 ERROR_QUE_PROC_OWNED
current process owns queue

332 ERROR_QUE_DUPLICATE
duplicate queue name

333 ERROR_QUE_ELEMENT _NOT _EXIST
queue element does not exist

334 ERROR_QUE_NO_MEMORY
inadequate queue memory

335 ERROR_QUE_INVALID_NAME
invalid queue name

336 ERROR_QUE_INVALID_PRIORITY
invalid queue priority parameter

337 ERROR_QUE_INVALID_HANDLE
invalid queue handle

338 ERROR_QUE_LINK_NOT_FOUND
queue link not found

339 ERROR_QUE_MEMORY _ERROR
queue memory error

340 ERROR_QUE_PREV_AT_END
previous queue element was at end of queue

341 ERROR_QUE_PROC_NO_ACCESS
process does not have access to queues

342 ERROR_QUE_EMPTY
queue is empty

343 ERROR_QUE_NAME_NOT _EXIST
queue name does not exist

344 ERROR_QUE_NOT _INITIALIZED
queues not initialized

345 ERROR_QUE_UNABLE_TO_ACCESS
unable to access queues

346 ERROR_QUE_UNABLE_ TO _ADD
unable to add new queue

347 ERROR_QUE_UNABLE_ TO_INIT
unable to initialize queues

349 ERROR_VIO_INVALID_MASK
invalid function replaced

350 ERROR_ VIO _PTR
invalid pointer to parameter

355 ERROR_ VIO _MODE
unsupported screen mode

A-10

356 ERROR_VIO_WIDTH
invalid cursor width value

358 ERROR_VIO_ROW
invalid row value

359 ERROR_VIO_COL
invalid column value

366 ERROR_VIO_WAIT_FLAG
invalid wait flag setting

367 ERROR_VIO_UNLOCK
screen not previously locked

369 ERROR_SMG_INVALID_SESSION_ID
invalid session ID

370 ERROR_SMG_NO_SESSIONS
no sessions avai I able

371 ERROR_SMG_SESSION_NOT _FOUND
session not found

372 ERROR_SMG_SET _TITLE
title sent by shell or parent cannot be changed

373 ERROR_KBD_PARAMETER
invalid parameter to Kbd

375 ERROR_KBD_INVALID_IOWAIT
invalid 1/0 wait specified

376 ERROR_KBD_INVALID_LENGTH
invalid length for keyboard

377 ERROR_KBD_INVALID_ECHO_MASK
invalid echo mode mask

378 ERROR_KBD_INVALID_INPUT_MASK
invalid input mode mask

379 ERROR_MON_INVALID_PARMS
invalid parameters to DosMon

380 ERROR_MON_INVALID_DEVNAME
invalid device name string

381 ERROR_MON_INVALID_HANDLE
invalid device handle

382 ERROR_MON_BUFFER_ TOO_SMALL
buffer too smal I

383 ERROR_MON_BUFFER_EMPTY
buffer is empty

384 ERROR_MON_DATA_TOO_LARGE
data record too large

186 ERROR_MOUSE_INV _HANDLE
Mouse device closed (invalid device handle)

A-11

389 ERROR_MOUSE_DISPLAY _PARMS
parameters invalid for display mode

391 ERROR_MOUSE_INV _ENTRY _PT
entry point not valid

392 ERROR_MOUSE_INV _MASK
function mask invalid

394 NO_ERROR_MOUSE_P TR_DRAWN
pointer drawn

395 ERROR_INVALID_FREQUENCY
invalid frequency for beep

396 ERROR_NLS_NO_COUNTRY _FILE
can't find country.sys file

397 ERROR_NLS_OPEN_FAILED
can't open country.sys file

398 ERROR_NO_COUNTRY _OR_CODEPAGE
country code not found

399 ERROR_NLS_TABLE_TRUNCATED
table returned information truncated, buffer too small

400 ERROR_NLS_BAD_TYPE
selected type does not exist

401 ERROR_NLS_ TYPE_NOT _FOUND
selected type not in file

402 ERROR_VIO_SMG_ONLY
valid from session manager only

403 ERROR_VIO_INVALID_ASCllZ
invalid ASCllZ length

404 ERROR_ VIO_DEREGISTER
VioDeRegister not allowed

405 ERROR_VIO_NO_POPUP
popup not allocated

406 ERROR_ VIO_EXISTING_POPUP
popup on screen (no wait)

407 ERROR_KBD_SMG_ONLY
valid from session manager only

408 ERROR_KBD_INVALID_ASCllZ
invalid ASCllZ length

409 ERROR_KBD_INVALID_MASK
invalid replacement mask

410 ERROR_KBD_REGISTER
KbdRegister not allowed

411 ERROR_KBD_DEREGISTER
KbdDeRegister not allowed

A-12

412 ERROR_MOUSE_SMG_ONL Y
valid from session manager only

413 ERROR_MOUSE_INVALID_ASCllZ
invalid ASCllZ length

414 ERROR_MOUSE_INVALID_MASK
invalid replacement mask

415 ERROR_MOUSE_REGISTER
Mouse register not allowed

416 ERROR_MOUSE_DEREGISTER
Mouse deregister not allowed

417 ERROR_SMG_BAD_ACTION
invalid action specified

418 ERROR_SMG_INVALID_CALL
INIT called more than once

419 ERROR_SCS_SG_NOT_FOUND
new screen group number

420 ERROR_SCS_NOT_SHELL
caller is not shell

421 ERROR_ VIO_INVALID_PARMS
invalid parms passed

422 ERROR_ VIO_FUNCTION_OWNED
save/restore al ready owned

423 ERROR_ VIO_RETURN
non-destruct return (undo)

425 ERROR_SCS_NOT _SESSION_MGR
caller not session manager

426 ERROR_ VIO_REGISTER
Vio register not allowed

427 ERROR_ VIO _NO _MODE_ THREAD
no mode restore thread in SG

428 ERROR_ VIO _NO _SAVE_RESTORE_ THD
no save/rest thread in SG

429 ERROR_ VIO_IN_BG
function invalid in background

430 ERROR_ VIO_ILLEGAL_DURING_POPUP
function not allowed during popup

431 ERROR_SMG_NOT _BASESHELL
caller is not the base shell

432 ERROR_SMG_BAD_STATUSREQ
invalid status requested

433 ERROR_QUE_INVALID_WAIT
nowait parameter out of bounds

A-13

434 ERROR_ VIO _LOCK
error returned from scrlock

435 ERROR_MOUSE_INVALID_IOWAIT
invalid parameters for IOWait

436 ERROR_ VIO_INVALID_HANDLE
invalid vio handle

438 ERROR_VIO_INVALID_LENGTH
invalid vio length

439 ERROR_KBD_INVALID_HANDLE
invalid kbd handle

440 ERROR_KBD_NO_MORE_HANDLE
ran out of handles

441 ERROR_KBD_CANNOT_CREATE_KCB
unable to create kcb

442 ERROR_KBD_CODEPAGE_LOAD_INCOMPL
unsuccessful codepage load

443 ERROR_KBD_INVALID_CODEPAGE_ID
invalid codepage id

444 ERROR_KBD_NO_CODEPAGE_SUPPORT
no codepage support

445 ERROR_KBD_FOCUS_REQUIRED
keyboard focus required

446 ERROR_KBD_FOCUS_ALREADY _ACTIVE
calling thread has an outstanding focus

447 ERROR_KBD_KEYBOARD_BUSY
keyboard busy

448 ERROR_KBD_INVALID_CODEPAGE
invalid codepage

449 ERROR_KBD_UNABLE_TO_FOCUS
focus attempt failed

450 ERROR_SMG_SESSION_NON_SELECT
session is not selectable

451 ERROR_SMG_SESSION_NOT _FOREGRND
parent/child session not foreground

452 ERROR_SMG_SESSION_NOT _PARENT
not parent of requested child

453 ERROR_SMG_INVALID_START _MODE
invalid session start mode

454 ERROR_SMG_INVALID_RELATED_OPT
invalid session start related option

455 ERROR_SMG_INVALID_BOND_OPTION
invalid session bond option .

A-14

456 ERROR_SMG_INVALID_SELECT _OPT
invalid session select option

457 ERROR_SMG_START _IN_BACKGROUND
session started in background

458 ERROR_SMG_INVALID_STOP _OPTION
invalid session stop option

459 ERROR_SMG_BAD_RESERVE
reserved parameters not zero

460 ERROR_SMG_PROCESS_NOT _PARENT
session parent process already exists

461 ERROR_SMG_INVALID_DATA_LENGTH
invalid data length

462 ERROR_SMG_NOT _BOUND
parent not bound

463 ERROR_SMG_RETRY _SUB_ALLOC
retry request block allocation

464 ERROR_KBD_DETACHED
this call disallowed for detached pid

465 ERROR_VIO_DETACHED
this call disallowed for detached pid

466 ERROR_MOU_DETACHED
this call disallowed for detached pid

467 ERROR_ VIO _FONT
no font available to support mode

468 ERROR_ VIO_USER_FONT
user font active

469 ERROR_ VIO_BAD_CP
invalid code page specified

470 ERROR_VIO_NO_CP
system displays don't support code page

471 ERROR_ VIO_NA_CP
current display does not support code page

472 ERROR_I NVALI D _ CODE_PAGE
invalid code page

473 ERROR_CPLIST _ TOO_SMALL
code page list is too small

474 ERROR_CP _NOT _MOVED
code page not moved

475 ERROR_MODE_SWITCH_INIT
mode switch i nit error

476 ERROR_CODE_PAGE_NOT _FOUND
code page not found

A-15

477 ERROR_UNEXPECTED_SLOT_RETURNED
internal error

478 ERROR_SMG_INVALID_TRACE_OPTION
invalid start session trace indicator

479 ERROR_ VIO_INTERNAL_RESOURCE
vio internal resource error

480 ERROR_ VIO_SHELL_INIT
vio shell init error

481 ERROR_SMG_NO_HARD_ERRORS
no session manager hard errors

482 ERROR_CP _SWITCH_INCOMPLETE
DosSetCp unable to set kbd/vio cp

483 ERROR_ VIO_ TRANSPARENT _POPUP
error during vio popup

484 ERROR_CRITSEC_OVERFLOW
critical section overflow

485 ERROR_CRITSEC_UNDERFLOW
critical section underflow

486 ERROR_ VIO_BAD_RESERVE
reserved parameter is not zero

487 ERROR_INVALID_ADDRESS
bad physical address

488 ERROR_ZERO_SELECTORS_REQUESTED
at least one selector must be requested

489 ERROR_NOT _ENOUGH_SELECTORS_AVA
not enough GOT selectors to satisfy request

490 ERROR_INVALID_SELECTOR
not a GDT selector

A-16

Index

A
ASCII mode 3-32
ASYNC Notes 6-27
asynchronous

communications/IOCtl
summary 6-6

asynchronous communications/SEE
COM 6-6

B
BINARY mode 3-32
Buffer

c

display video 5-76
flush key stroke 3-8
get physical video 5-18
get video 5-5
register as monitor 2-124
reset 2-10

call-return interface 1-1
case map 2-11
category codes, generic IOCtl 6-1
Category 1 O IOCtl

Commands 6-188
Category 11 IOCtl

Commands 6-191
Category 3 IOCtl Commands 6-69
Category 4 IOCtl Commands 6-71
Category 5 IOCtl Commands 6-115
Category 7 IOCtl Commands 6-129
Category 8 IOCtl Commands 6-162
Category 9 IOCtl Commands 6-179
character device monitor

IOCtls 6-188
Child

wait for termination 2-28

Code Page
get IDs 3-10
get process 2-72
get video 5-9
initialize 2-154
set 2-222, 3-23
set custom 3-25
set process 2-235
set video 5-60

Code Segment
create 2-20

collate table, get 2-70
COM/baud rate/return 6-20
COM/baud rate/set 6-7
COM/bit rate/return 6-20
COM/bit rate/set 6-7
COM/break signal/off 6-14
COM/break signal/on 6-21
COM/CTS/return 6-54
COM/DCD/return 6-54
COM/DSR/return 6-54
COM/DTR and ATS/return 6-53
COM/error/return 6-59
COM/event word/clear 6-61
COM/event word/return 6-61
COM/IOCtl summary 6-6
COM/line characteristics/data

bits 6-10
COM/line

characteristics/parity 6-1 o
COM/line

characteristics/return 6-47
COM/line characteristics/set 6-10
COM/Ii ne characteristics/stop

bits 6-10
COM/modem control input

signals/return 6-54
COM/modem control output

signals/return 6-53

X-1

COM/receive queue/return# char
acters 6-55

COM/receive queue/return
size 6-55

COM/RI/return 6-54
COM/RLSD - DCD 6-6
COM/status/return 6-49
COM/transmit data

status/return 6-51
COM/transmit queue/return #char

acters 6-57
COM/transmit queue/return

size 6-57
COM/Tx break status/return 6-47
COM/XOFF/simulate 6-18
COM/XON/simulate 6-20
commands, IOCtl 6-2
country information 2-74
Critical Section

enter 2-39
exit 2-53
of execution 2-39

CS Alias 2-20

D
date, get 2-77
date, set 2-224
DBCS vector 2-79
Device

configuration 2-32
1/0 control 2-34
installed 2-32

device buffer control IOCtls 6-191
Device Monitor

close connection 2-118
open connection 2-119
read input 2-121
register buffers 2-124
write output 2-127

Directory
change current 2-13
query current 2-176

X-2

Disk
partitionable support 2-161
query current 2-177
select drive 2-208

disk control IOCtl, get device
parameters 6-177

disk control IOCtl, get physical
device parameters 6-185

disk control IOCtls 6-179
disk, (logical) control IOCtls 6-162
disk, (physical) control

IOCtls 6-179
diskette control IOCtl, get device

parameters 6-177, 6-185
DosAllocHuge 2-2
DosAllocSeg 2-5
DosAllocShrSeg 2-7
DosBeep 2-9
DosBufReset 2-1 O
DosCaseMap 2-11
DosChDir 2-13
DosChgFilePtr 2-14
DosCLIAccess 2-16
DosClose 2-17
DosCloseQueue 2-18
DosCloseSem 2-19
DosCreateCSAlias 2-20
DosCreateQueue 2-22
DosCreateSem 2-24
DosCreateThread 2-26
DosCwait 2-28
DosDelete 2-31
DosDevConfig 2-32
DosDevlOCtl 2-34
DosDupHandle 2-37
DosEnterCritSec 2-39
DosErrClass 2-41
DosError 2-44
DosExecPgm 2-46
DosExit 2-51
DosExitCritSec 2-53
DosExitlist 2-54
Dosfilelocks 2-56

DosFindClose 2-58
DosFindFirst 2-59
DosFindNext 2-63
DosFlagProcess 2-65
DosFreeModule 2-67
DosFreeSeg 2-68
DosGetCollate 2-70
DosGetCp 2-72
DosGetCtrylnfo 2-74
DosGetDateTime 2-77
DosGetDBCSEv 2-79
DosGetEnv 2-81
DosGetHugeShift 2-82
DosGetlnfoSeg 2-83
DosGetMachineMode 2-87
DosGetMessage 2-88
DosGetModHandle 2-92
DosGetModName 2-93
DosGetPID 2-94
DosGetProcAddr 2-95
DosGetPrty 2-97
DosGetSeg 2-99
DosGetShrSeg 2-100
DosG iveSeg 2-102
DosHoldSignal 2-104
DoslnsMessage 2-106
DosKillProcess 2-108
DosLoadModule 2-110
DosLockSeg 2-112
DosMakePipe 2-114
DosMemAvail 2-116
DosMkDir 2-117
DosMonClose 2-118
DosMonOpen 2-119
DosMonRead 2-121
DosMonReg 2-124
DosMonWrite 2-127
DosMove 2-130
DosMuxSemWait 2-132
DosNewSize 2-134
DosOpenQueue 2-143
DosOpenSem 2-144
DosPeekQueue 2-146

DosPFSActivate 2-149
DosPFSCloseUser 2-152
DosPFSlnit 2-154
DosPFSQueryAct 2-157
DosPFSVerifyFont 2-159
DosPhysicalDisk 2-161
DosPortAccess 2-164
DosPtrace 2-166
DosPurgeQueue 2-174
DosPutMessage 2-175
DosQCurDir 2-176
DosQCurDisk 2-177
DosQFHandState 2-178
DosQFilelnfo 2-181
DosQFileMode 2-183
DosQFslnfo 2-185
DosQHandType 2-187
DosQueryQueue 2-189
DosQVerify 2-190
DosRead 2-191
DosReadAsync 2-193
DosReadQueue 2-195
DosReallocHuge 2-198
DosReallocSeg 2-200
DosResumeThread 2-202
DosRmDir 2-203
DosScanEnv 2-204
DosSearchPath 2-205
DosSelectDisk 2-208
DosSelectSession 2-209
DosSemClear 2-211
DosSemRequest 2-213
DosSemSet 2-216
DosSemSetWait 2-217
DosSemWait 2-219
DosSendSignal 2-221
DosSetCp 2-222
DosSetDate Ti me 2-224
DosSetFHandState 2-225
DosSetFilelnfo 2-228
DosSetFileMode 2-230
DosSetFslnfo 2-232
DosSetMaxFH 2-234

X-3

DosSetProcCp 2-235
DosSetPrty 2-237
DosSetSession 2-240
DosSetSigHandler 2-243
DosSetVec 2-248
DosSetVerify 2-250
DosSleep 2-251
DosStartSession 2-253
DosStopSession 2-259
DosSubAlloc 2-261
DosSubFree 2-263
DosSubSet 2-264
DosSuspendThread 2-266
DosTimerAsync 2-267
DosTimerStart 2-269
DosTimerStop 2-271
DosUnlockSeg 2-272
DosWrite 2-273
DosWriteAsync 2-275
DosWriteQueue 2-278
Dynamic Link

E

free module 2-67
get module handle 2-92
get module name 2-93
get procedure address 2-95
load module 2-110

environment string 2-81
environment vector 2-79
equipment check 2-32
error code classification 2-41
Errors

classify codes 2-41
processing 2-44

X-4

F
File

change size 2-134
delete 2-31
find first matching 2-59
find next matching 2-63
lock manager 2-56
move 2-130
open 2-135
query information 2-181
query mode 2-183
query system information 2-185
read 2-191
read asynchronous 2-193
search path for name 2-205
set information 2-228
set mode/attribute 2-230
set system information 2-232
write to, asynchronous 2-275
write to, synchronous 2-273

File Handle
close 2-17
duplicate 2-37
query state 2-178
set maximum 2-234
set state 2-225

file lock manager 2-56
file name, search 2-205
file pointer, change 2-14
find handle, close 2-58
Flags

set external event 2-65
Font

activate 2-149
initialize 2-154
query active 2-157
verify 2-159

foreground session, select 2-209
function codes, generic IOCtl 6-1

G
general device control

IOCtls 6-191
generic IOCtls/COM 6-6
Get Device Parameters 6-177
Get Version Number 2-101

H
Handle

query type 2-187
hard error processing 2-44

110 Privilege
disable/enable interrupts 2-16
port access 2-164
request CLl/STI 2-16
request/release access 2-164

IOCtl
character device monitor com-

mands 6-188
command summary 6-2
commands 6-2
general device control 6-191
keyboard control

commands 6-71
logical disk control 6-162
mouse control commands 6-129
physical disk control

commands 6-179
printer control commands 6-115
summary 6-2

IOCtl command summary 6-2
IOCtl command, Pointer Draw

Control 6-69
IOCtl commands, Keyboard

Control 6-71
IOCtl commands, mouse

control 6-129
IOCtl commands, printer

control 6-115

IOCtl, character device
monitor 6-188

IOCtl, disk control 6-179
IOCtl, general device control 6-191
IOCtl, logical disk control 6-162
IOCtl, monitor 6-188
IOCtl, physical disk control 6-179
IOCtls/COM 6-6

K
KbdCharln 3-2
KbdClose 3-6
KbdDeRegister 3-7
KbdFlushBuffer 3-8
KbdFreeFocus 3-9
KbdGetCp 3-10
KbdGetFocus 3-11
KbdGetStatus 3-12
KbdOpen 3-15
KbdPeek 3-16
KbdRegister 3-20
KbdSetCp 3-23
KbdSetCustXt 3-25
KbdSetFgnd 3-26
KbdSetStatus 3-27
KbdStringln 3-30
KbdSynch 3-33
KbdXlate 3-34
Keyboard

close 3-6
deregister subsystem 3-7
free focus 3-9
get focus 3-11
get status 3-12
open 3-15
peek character 3-16
peek scan code 3-16
read character 3-2
read character string 3-30
read scan code 3-2
register subsystem 3-20
set priority 3-26
set status 3-27

X-5

Keyboard (continued)
synchronize access 3-33
translate scan code 3-34

Keyboard Control 6-71

L
level triggered 2-214
logical disk control IOCtl

commands 6-162

M
matching file, find first 2-59
matching file, find next 2-63
Memory

allocate huge 2-2
allocate segment 2-5
allocate shared segment 2-7
change huge size 2-198
free subal located 2-263
get largest free block 2-116
get shared segment 2-100
set allocated 2-264
suballocate segment 2-261

Messages
output text to handle 2-175
system 2-88
variable text 2-88
variable text strings 2-106

modem control signals 6-15
monitor IOCtls 6-188
MouClose 4-2
MouDeRegister 4-3
MouDrawPtr 4-4
MouFlushQue 4-5
MouGetDevStatus 4-6
MouGetEventMask 4-8
MouGetNumButtons 4-10
MouGetNumMickeys 4-11
MouGetNumQueEI 4-12
MouGetPtrPos 4-13
MouGetPtrShape 4-14

X-6

MouGetScaleFact 4-17
MoulnitReal 4-19
MouOpen 4-21
MouReadEventQue 4-23
MouRegister 4-26
MouRemovePtr 4-30
Mouse

deregister subsystem 4-3
get event mask 4-8
get number of buttons 4-10
get number of mickeys 4-11
get scale factor 4-17
get synchronous access 4-44
initialize DOS mode 4-19
register subsystem 4-26
set event mask 4-34
set scale factor 4-42

Mouse control IOCtl
commands 6-129

Mouse Device
close 4-2
get status 4-6
open 4-21
set status 4-32

Mouse Pointer
draw 4-4
get shape 4-14
query position 4-13
remove 4-30
set position 4-36
set shape 4-38

Mouse Queue
flush 4-5
get event 4-12
read event 4-23

MouSetDevStatus 4-32
MouSetEventMask 4-34
M ouSetPtrPos 4-36
MouSetPtrShape 4-38
MouSetScaleFact 4-42
MouSynch 4-44

N
notes, ASYNC 6-27

0
Open a File 2-135

p
physical disk control IOCtl com

mands 6-179
Pipes

create 2-114
Pointer Draw Control 6-69
Printer Activate Font IOCtl 6-119
printer control IOCtls 6-115
Printer Query Active Font

IOCtl 6-125
Printer Verify Font IOCtl 6-127
Process

delay execution 2-251
get ID 2-94
get priority 2-97
routine list termination 2-54
set code page 2-235
set priority 2-237
termination 2-108

processor mode 2-87
Program

Q

debug interface 2-166
execution 2-46
exit 2-51

Queue
close 2-18
create 2-22
open 2-143
peek 2-146
purge 2-174
query size 2-189
read 2-195
write to 2-278

R
return code classification 2-41
routine list 2-54
RS232-C port/IOCtl summary 6-6
RS232-C/SEE COM 6-6

s
scan code, translate 3-34
Segment

allocate 2-5
allocate shared 2-7
change size 2-200
free 2-68
free suballocated

memory 2-263
get address 2-99
get shared 2-100
give access to 2-102
lock 2-112
scan environment 2-204
suballocate memory 2-261
system variable address 2-83
unlock 2-272

Semaphore
clear (release) 2-211
close, system 2-19
create, system 2-24
open, system 2-144
request 2-213
set owned 2-216
set/wait for clear 2-217
wait N to clear 2-132
wait to clear 2-219

serial communications/SEE
COM 6-6

serial port/IOCtl summary 6-6
Session

start 2-253
stop 2-259

session status, set 2-240
shift count 2-82
signal focus 2-246

X-7

Signal Handler
set 2-243

Signals
disable/enable 2-104
send control break 2-221
send control C 2-221

speaker sound 2-9
Subdirectory

T

create 2-117
remove 2-203

Thread
create 2-26
restart 2-202
suspend execution 2-266

time delay, start asynch 2-267
time, get 2-77
time, set 2-224
Timer

v

start 2-269
stop 2-271

vector, set 2-248
verify setting, query 2-190
verify switch, set 2-250
version number, get 2-101
Video

ANSI status 5-4
configuration 5-7
deallocate popup 5-3
deregister subsystem 5-2
get font 5-13
get state 5-20
register subsystem 5-38
set ANSI 5-59
set code page 5-60
set font 5-65
set state 5-73

Video Cursor
get position 5-10

X-8

Video Cursor (continued)
get type 5-11
set position 5-62
set type 5-63

Video Mode
display 5-16
restore 5-23
restore wait 5-25
set display 5-67

Video pop-up
allocate 5-28

Video Read
char/attr string 5-34
character string 5-36

Video Screen
lock 5-48
print 5-32
print toggle 5-33
save redraw undo 5-43
save redraw wait 5-45
scrol I down 5-50
scroll left 5-52
scroll right 5-54
scroll up 5-56
unlock 5-58

Video Write
char string w/attrib 5-81
char/attr string 5-77
character string 5-79
N attributes 5-83, 5-85
N characters 5-85, 5-87
TTY string 5-89

VioDeRegister 5-2
VioEndPopUp 5-3
VioGetAnsi 5-4
VioGetBuf 5-5
VioGetConfig 5-7
VioGetCp 5-9
VioGetCurPos 5-10
VioGetCurType 5-11
VioGetFont 5-13
VioGetMode 5-16
VioGetPhysBuf 5-18

VioGetState 5-20
VioModeUndo 5-23
VioModeWait 5-25
VioPopUp 5-28
VioPrtSc 5-32
VioPrtScToggle 5-33
VioReadCellStr 5-34
VioReadCharStr 5-36
VioRegister 5-38
VioSavRedrawUndo 5-43
VioSavRedrawWait 5-45
VioScrlock 5-48
VioScrollDn 5-50
VioScrolllf 5-52
VioScrollRt 5-54
VioScrollUp 5-56
VioScrUnlock 5-58
VioSetAnsi 5-59
VioSetCp 5-60
VioSetCurPos 5-62
VioSetCurType 5-63
VioSetFont 5-65
VioSetMode 5-67
VioSetState 5-73
VioShowBuf 5-76
VioWrtCellStr 5-77
VioWrtCharStr 5-79
VioWrtCharStrAtt 5-81
VioWrtNAttr 5-83
VioWrtNCell 5-85
VioWrtNChar 5-87
VioWrtTTY 5-89

X-9

TM Operating System/2 is a trademark of
International Business Machines Corporation.

® IBM is a registered trademark of
International Business Machines Corporation.

---- ------- - - --- ---- - ---- -- ------- ------·-
© IBM Corp. 1987

International Business
Machines Corporation
P.O. Box 1328-W
Boca Raton
Florida 33429-1328

Printed in the
United States of America
All Rights Reserved.

84X1440

